An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains.
View Article and Find Full Text PDFIn this work, we report our results on the hydrodynamic behavior of poly(2-methyl-2-oxazoline) (PMeOx). PMeOx is gaining significant attention for use as hydrophilic polymer in pharmaceutical carriers as an alternative for the commonly used poly(ethylene glycol) (PEG), for which antibodies are found in a significant fraction of the human population. The main focus of the current study is to determine the hydrodynamic characteristics of PMeOx under physiological conditions, which serves as basis for better understanding of the use of PMeOx in pharmaceutical applications.
View Article and Find Full Text PDFThe aim of this work was to increase the efficiency of catalytic systems for the hydrolytic cleavage of 4-nitrophenyl esters of phosphonic acids. Quaternary ammonium-containing comb-like polyelectrolytes («polymerized micelles») with ester cleavable fragments and a low aggregation threshold were used as catalysts. The synthesis of poly(11-acryloyloxyundecylammonium) surfactants with different counterions (Br , NO , CH C H SO ) and head groups was realized by micellar free-radical polymerization.
View Article and Find Full Text PDF