The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4.
View Article and Find Full Text PDFAcetyl and other acyl groups from different short-chain fatty acids (SCFA) competitively modify histones at various lysine sites. To fully understand the functional significance of such histone acylation, a key epigenetic mechanism, it is crucial to characterize the cellular sources of the corresponding acyl-CoA molecules required for the lysine modification. Like acetate, SCFAs such as propionate, butyrate and crotonate are thought to be the substrates used to generate the corresponding acyl-CoAs by enzymes known as acyl-CoA synthetases.
View Article and Find Full Text PDFThe synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate.
View Article and Find Full Text PDFPioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes.
View Article and Find Full Text PDFNovel agents to treat invasive fungal infections are urgently needed because the small number of established targets in pathogenic fungi makes the existing drug repertoire particularly vulnerable to the emergence of resistant strains. Recently, we reported that Candida albicans Bdf1, a bromodomain and extra-terminal domain (BET) bromodomain with paired acetyl-lysine (AcK) binding sites (BD1 and BD2) is essential for fungal cell growth and that an imidazopyridine (1) binds to BD2 with selectivity versus both BD1 and human BET bromodomains. Bromodomain binding pockets contain a conserved array of structural waters.
View Article and Find Full Text PDFHIV-1 Rev mediates the nuclear export of intron-containing viral RNA transcripts and is essential for viral replication. Rev is imported into the nucleus by the host protein importin β (Impβ), but how Rev associates with Impβ is poorly understood. Here, we report biochemical, mutational, and biophysical studies of the Impβ/Rev complex.
View Article and Find Full Text PDFThe pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective.
View Article and Find Full Text PDFIn infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter.
View Article and Find Full Text PDFTaking advantage of the evolutionary conserved nature of ATAD2, we report here a series of parallel functional studies in human, mouse, and to investigate ATAD2's conserved functions. In , the deletion of ortholog, , leads to a dramatic decrease in cell growth, with the appearance of suppressor clones recovering normal growth. The identification of the corresponding suppressor mutations revealed a strong genetic interaction between Abo1 and the histone chaperone HIRA.
View Article and Find Full Text PDFThe three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved.
View Article and Find Full Text PDFMass spectrometry (MS) is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity and speed. Over the past 25 years, MS performed under non-denaturing conditions ("native MS") has been successfully exploited to investigate non-covalently associated biomolecules. Here we illustrate native MS applications aimed at studying protein-ligand interactions and structures of biomolecular assemblies, including both soluble and membrane protein complexes.
View Article and Find Full Text PDFThe histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends.
View Article and Find Full Text PDFThe chapter author provided the below additional text to be added in the acknowledgement section. This has now been updated in the revised version of the book.
View Article and Find Full Text PDFNative mass spectrometry (MS) enables the characterization of macromolecular assemblies with high sensitivity. It can reveal the stoichiometry of subunits as well as their two-dimensional interaction network and provide information regarding the dynamic behavior of macromolecular complexes. Here, we describe the workflow to perform native MS experiments.
View Article and Find Full Text PDFInvasive fungal infections cause significant morbidity and mortality among immunocompromised individuals, posing an urgent need for new antifungal therapeutic strategies. Here we investigate a chromatin-interacting module, the bromodomain (BD) from the BET family of proteins, as a potential antifungal target in Candida albicans, a major human fungal pathogen. We show that the BET protein Bdf1 is essential in C.
View Article and Find Full Text PDFLinker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments.
View Article and Find Full Text PDFRecent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM.
View Article and Find Full Text PDFRecently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization.
View Article and Find Full Text PDFAccess to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.
View Article and Find Full Text PDFBromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease.
View Article and Find Full Text PDFAlthough the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome.
View Article and Find Full Text PDF