Publications by authors named "Petko Chernev"

Photosystem II starts the photosynthetic electron transport chain that converts solar energy into chemical energy and thus sustains life on Earth. It catalyzes two chemical reactions: water oxidation to molecular oxygen and plastoquinone reduction. Coupling of electron and proton transfer is crucial for efficiency; however, the molecular basis of these processes remains speculative owing to uncertain water binding sites and the lack of experimentally determined hydrogen positions.

View Article and Find Full Text PDF

Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (S states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (MnCaO) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with HO provide insight into the substrate binding modes and sites via determination of exchange rates.

View Article and Find Full Text PDF

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged MnCa complex (MnCaO) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle.

View Article and Find Full Text PDF

Metal complexes are extensively explored as catalysts for oxidation reactions; molecular-based mechanisms are usually proposed for such reactions. However, the roles of the decomposition products of these materials in the catalytic process have yet to be considered for these reactions. Herein, the cyclohexene oxidation in the presence of manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) (1) in a heterogeneous system via loading the complex on an SBA-15 substrate is performed as a study case.

View Article and Find Full Text PDF

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the MnCaO cluster first stores four oxidizing equivalents, the S to S intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S→[S]→S transition where O is formed and Kok's water oxidation clock is reset.

View Article and Find Full Text PDF

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn CaO complex, in the intermediate S (i = 0-4)-states of the Kok cycle, obtained using XFELs.

View Article and Find Full Text PDF

Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMnO-cluster. This cyclic process involves five redox intermediates known as the S-S states.

View Article and Find Full Text PDF

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5)Cl] (Py5 = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)]/SO system at pH 8.

View Article and Find Full Text PDF

We report the electrochemical oxidation of ferricyanide, [Fe(CN)] and characterised the oxidation product by in-situ FTIR and XAS spectroelectrochemistry methods. Oxidation of [Fe(CN)] is proposed to proceed via a tentative Fe(IV) intermediate that undergoes reduction elimination to give cis-[Fe(CN)(CHCN)] as stable product in acetonitrile. Speciation of the oxidation product by DFT calculations is underpinned by good agreement to experimental data.

View Article and Find Full Text PDF

Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.

View Article and Find Full Text PDF

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines.

View Article and Find Full Text PDF

The molecular oxygen we breathe is produced from water-derived oxygen species bound to the MnCaO cluster in photosystem II (PSII). Present research points to the central oxo-bridge O5 as the 'slow exchanging substrate water (W)', while, in the S state, the terminal water ligands W2 and W3 are both discussed as the 'fast exchanging substrate water (W)'. A critical point for the assignment of W is whether or not its exchange with bulk water is limited by barriers in the channels leading to the MnCaO cluster.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel method using single-energy X-ray absorption spectroscopy is proposed to monitor these oxidation-state changes in real-time during OER, aiming for better catalyst performance and longevity.
  • * The study details the calibration process for obtaining accurate oxidation state data and showcases the utility of combining X-ray spectroscopy with electrochemical techniques to enhance the understanding of redox kinetics in catalyst systems.
View Article and Find Full Text PDF

Developing new transition metal catalysts requires understanding of how both metal and ligand properties determine reactivity. Since metal complexes bearing ligands of the Py5 family (2,6-bis-[(2-pyridyl)methyl]pyridine) have been employed in many fields in the past 20 years, we set out here to understand their redox properties by studying a series of base metal ions (M = Mn, Fe, Co, and Ni) within the Py5OH (pyridine-2,6-diylbis[di-(pyridin-2-yl)methanol]) variant. Both reduced (M) and the one-electron oxidized (M) species were carefully characterized using a combination of X-ray crystallography, X-ray absorption spectroscopy, cyclic voltammetry, and density-functional theory calculations.

View Article and Find Full Text PDF

Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles.

View Article and Find Full Text PDF

Alcohol to aldehyde conversion is a critical reaction in the industry. Herein, a new electrochemical method is introduced that converts 1 mmol of alcohols to aldehydes and ketones in the presence of N-hydroxyphthalimide (NHPI, 20 mol%) as a mediator; this conversion is achieved after 8.5 h at room temperature using a piece of Ni foam (1.

View Article and Find Full Text PDF

Water splitting is a promising reaction for storing sustainable but intermittent energies. In water splitting, water oxidation is a bottleneck, and thus different catalysts have been synthesized for water oxidation. Metal-organic frameworks (MOFs) are among the highly efficient catalysts for water oxidation, and so far, MOF-based catalysts have been divided into two categories: MOF-derived catalysts and direct MOF catalysts.

View Article and Find Full Text PDF

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S, S, S, and S, showing that a water molecule is inserted during the S → S transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S → S transition.

View Article and Find Full Text PDF

Herein, we report the synthesis, characterization, crystal structure, density functional theory calculations, and water-oxidizing activity of a pivalate Mn-Ca cluster. All of the manganese atoms in the cluster are Mn(iv) ions and have a distorted MnO6 octahedral geometry. Three Mn(iv) ions together with a Ca(ii) ion and four-oxido groups form a cubic Mn3CaO4 unit which is similar to the Mn3CaO4 cluster in the water-oxidizing complex of Photosystem II.

View Article and Find Full Text PDF

Ferrous chloride complexes [FeLCl] commonly attain a high-spin state independently of the supporting ligand(s) and temperature. Herein, we present the first report of a complete spin crossover with T = 80 K in [Fe(Py5OH)Cl] (Py5OH = pyridine-2,6-diylbis[di(pyridin-2-yl)methanol]). Both spin forms of the complex are analyzed by X-ray spectroscopy and DFT calculations.

View Article and Find Full Text PDF

Direct (photo)electrochemical production of non-fossil fuels from water and CO requires water-oxidation catalysis at near-neutral pH in the presence of appropriate anions that serve as proton acceptors. We investigate the largely enigmatic structural role of anions in water oxidation for the prominent cobalt-phosphate catalyst (CoCat), an amorphous and hydrated oxide material. Co([(P/As)O])·8HO served, in conjunction with phosphate-arsenate exchange, as a synthetic model system.

View Article and Find Full Text PDF

In-situ X-ray absorption spectroscopy (XAS) at the oxygen K-edge was used to investigate the role of oxygen during the oxygen evolution reaction (OER) in an electrodeposited Ni-Fe(OH) electrocatalyst in alkaline pH. We show the rise of a pre-peak feature at 529 eV in the O K-edge spectra, correlated to the appearance of a shoulder at the Ni L-edge and formation of oxidized Ni-O. Then, for the first time, we track the spectral changes in a dynamic fashion in both the soft and hard X-ray regimes during cyclic voltammetry (in situ CV-XAS) to obtain a fine-tuned resolution of the potential-related changes.

View Article and Find Full Text PDF

Facile electromodification of metallic NiFe alloys leads to a series of NiFe oxyhydroxide surface films with excellent electrocatalytic performance in alkaline water oxidation. During cyclic voltammetry and after sudden potential jumps between noncatalytic and catalytic potentials, Ni oxidation/reduction was tracked with millisecond time resolution by a UV/Vis reflectance signal. Optimal catalysis at intermediate Ni/Fe ratios is explained by two opposing trends for increasing Fe content: a) pronounced slowdown of the Ni /Ni oxidation step and b) increased reactivity of the most oxidized catalyst state detectable at catalytic potentials.

View Article and Find Full Text PDF