Publications by authors named "Petitot F"

A rostro-caudal gradient of uranium (U) in the brain has been suggested after its inhalation. To study the factors influencing this mapping, we first used 30-min acute inhalation at 56 mg/m of the relatively soluble form UO in the rat. These exposure parameters were then used as a reference in comparison with the other experimental conditions.

View Article and Find Full Text PDF

The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect.

View Article and Find Full Text PDF

Uranium nanoparticles (<100 nm) can be released into the atmosphere during industrial stages of the nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account.

View Article and Find Full Text PDF

Microdosimetry using Monte Carlo simulation is a suitable technique to describe the stochastic nature of energy deposition by alpha particle at cellular level. Because of its short range, the energy imparted by this particle to the targets is highly non-uniform. Thus, to achieve accurate dosimetric results, the modelling of the geometry should be as realistic as possible.

View Article and Find Full Text PDF

As recommended by OECD Guidelines, percutaneous penetration studies consider intact skin, but rarely injured skin. Recent years have witnessed a growing concern for these two types of dermal exposure in the industry, particularly in the nuclear industry. The aim of this study was to show that a method based on an in vitro device can be used to realistically assess how skin-barrier alterations caused by occupational accidents can modify the percutaneous penetration and distribution of radionuclides, particularly uranium.

View Article and Find Full Text PDF

Uranium is an alpha-particle-emitting heavy metal. Its genotoxicity results from both its chemical and its radiological properties that vary with its isotopic composition (12% enriched uranium in (235)U (EU) has a specific activity 20 times higher than 0.3% depleted uranium in (235)U (DU)).

View Article and Find Full Text PDF

Uranium presents numerous industrial and military uses and one of the most important risks of contamination is dust inhalation. In contrast to the other modes of contamination, the inhaled uranium has been proposed to enter the brain not only by the common route of all modes of exposure, the blood pathway, but also by a specific inhalation exposure route, the olfactory pathway. To test whether the inhaled uranium enter the brain directly from the nasal cavity, male Sprague-Dawley rats were exposed to both inhaled and intraperitoneally injected uranium using the (236)U and (233)U, respectively, as tracers.

View Article and Find Full Text PDF

The aim of this work is to assess in vivo in a hairless rat model, the percutaneous diffusion of uranium through intact or wounded rat skin. Six types of wounds were simulated by excoriation and burns with 10 N HF, 2, 5 and 14 N HNO3 and 10 N NaOH on anaesthetised hairless rats. Percutaneous penetration through wounded skin towards blood and subsequent urinary excretion of uranium was followed in vivo during 24 h.

View Article and Find Full Text PDF

Uranium uptake can occur accidentally by inhalation, ingestion, injection, or absorption through intact or wounded skin. Intact or wounded skin routes of absorption of uranium have received little attention. The aims of our work were (1) to evaluate the influence of the type of wound contamination on the short term distribution and excretion of uranium in rats and (2) to generate data to assess the time available to treat contamination of intact or wounded skin before significant uptake of uranium occurs.

View Article and Find Full Text PDF

At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique.

View Article and Find Full Text PDF

Most normal mammalian somatic cells cultivated in vitro enter replicative senescence after a finite number of divisions, as a consequence of the progressive shortening of telomeres during proliferation that reflects one aspect of organism/cellular aging. The situation appears more complex in rodent cells due to physiological telomerase expression in most somatic normal tissues, great telomere length, and the difficulties of finding suitable in vitro culture conditions. To study in vitro aging of rat lung epithelial cells, we have developed primary culture conditions adapted to rat fresh lung explants and have studied for 1 year (50 passages) the changes in cellular proliferation and mortality, genetic instability, telomerase activity, telomere length, and tumorigenic potential.

View Article and Find Full Text PDF

A system was set up to provide direct exposure of cells cultured in vitro to radon and its decay products. Radon gas emanating from a uranium source was introduced at a measured concentration in a closed 10-m(3) exposure chamber. Cells were cultured on the microporous membrane of an insert that was floating over the culture medium in a six-well cluster plate.

View Article and Find Full Text PDF

To analyze relationships between replication and homologous recombination in mammalian cells, we used replication inhibitors to treat mouse and hamster cell lines containing tandem repeat recombination substrates. In the first step, few double-strand breaks (DSBs) are produced, recombination is slightly increased, but cell lines defective in non-homologous end-joining (NHEJ) affected in ku86 (xrs6) or xrcc4 (XR-1) genes show enhanced sensitivity to replication inhibitors. In the second step, replication inhibition leads to coordinated kinetics of DSB accumulation, Rad51 foci formation and RAD51-dependent gene conversion stimulation.

View Article and Find Full Text PDF

The use of thoriated tungsten electrodes may be at the origin of a potential hazard for the personnel involved in the use of electrodes, as well as the general population. To assess this hazard, the electrode radioactivity measurements by alpha and beta counting has been conducted. The radioelements were identified by alpha and gamma spectromety.

View Article and Find Full Text PDF

The radioactive properties and physicochemistry of thorium were studied and correlations drawn between thorium and element sof the titanium group, lanthanides and plutonium. It appears that the behavior of Th4+ and Pu4+ are similar, particularly their distribution pattern on bone surfaces. Chelating agents are reviewed and the structure of metal chelates indicated.

View Article and Find Full Text PDF