A major hurdle in pediatric formulation development is the lack of safety and toxicity data on some of the commonly used excipients. While the maximum oral safe dose for several kinds of excipients is known in the adult population, the doses in pediatric patients, including preterm neonates, are not established yet due to the lack of evidence-based data. This paper consists of four parts: (1) country-specific perspectives in different parts of the world (current state, challenges in excipients, and ongoing efforts) for ensuring the use of safe excipients, (2) comparing and contrasting the country-specific perspectives, (3) past and ongoing collaborative efforts, and (4) future perspectives on excipients for pediatric formulation.
View Article and Find Full Text PDFThe entorhinal cortex lesion paradigm is a widely accepted and efficient method to provoke reactive synaptogenesis and terminal remodeling in the adult CNS. This approach has been used successfully to contrast the profile of reactivity from various proteins associated with Alzheimer's disease pathophysiology in wild-type and apolipoprotein E (apoE)-deficient (APOE ko) mice. Results indicate that the production of the beta-amyloid 1-40 peptide (A beta 40) is increased in response to neuronal injury, with a timing that is different between wild-type and APOE ko animals.
View Article and Find Full Text PDFApoER2 is one of the major receptors for ApoE in the brain, and has been shown to be involved not only in lipoprotein endocytosis, as other members of the LDL receptor family of receptors, but also in various cellular functions such as signalling and cellular guidance. By using a model of synaptic plasticity in mice lacking none, one or two alleles of the apoER2 gene, we investigated the implication of such a receptor deficiency on the remodelling process. Our results indicate that animals lacking apoER2 express higher levels of brain APP, as well as both key amyloid peptides, while apoE levels are slightly lower.
View Article and Find Full Text PDFThe H2 allele of apolipoprotein (apo) C-I is associated with Alzheimer's disease (AD). However, this association is potentially confounded by the linkage disequilibrium of H2 with the epsilon2 and epsilon4 alleles of apoE and of H1 with the epsilon3 allele. To establish plausibility for a direct role for apoC-I in AD, we compared apoC-I and apoE protein and mRNA levels in postmortem specimens of frontal cortex and hippocampus from AD patients with levels in nondemented controls.
View Article and Find Full Text PDFCrit Rev Neurobiol
May 2001
Lipoproteins are macromolecular complexes composed of lipids and proteins. The role of these complexes is to provide cells of the organism with lipids to be used as a source of energy, building blocks for biomembrane synthesis, and lipophilic molecules (e.g.
View Article and Find Full Text PDFConvertases are proteases responsible for the bioactivation of many proteins and peptides having a potential role in ontogenesis. As a model to study regulation of convertases in embryo, we use the P19 embryonal carcinoma cell line, which can differentiate into various cell types. The expression of convertase PC2 and its specific binding peptide 7B2 are co-induced during neuronal differentiation of P19 cells.
View Article and Find Full Text PDFThe epsilon4 allele of apolipoprotein E (apoE) is associated with increased risk for the development of Alzheimer's disease (AD), possibly due to interactions with the beta-amyloid (Abeta) protein. The mechanism by which these two proteins are linked to AD is still unclear. To further assess their potential relationship with the disease, we have determined levels of apoE and Abeta isoforms from three brain regions of neuropathologically confirmed AD and non-AD tissue.
View Article and Find Full Text PDFConvertases of the subtilisin/kexin family are responsible for the biological activation of a variety of pro-proteins, pro-hormones, and pro-trophic factors, and thus can modulate various aspects of embryonic development. We investigated the expression of each convertase by Northern hybridization during cell differentiation in vitro, using the mouse embryonal carcinoma cell line P19 as a model. The neuroendocrine convertase PC2 and 7B2, its specific binding protein, are co-induced during neuronal differentiation of P19 cells with retinoic acid, whereas the other convertases are not or follow different patterns of temporal expression.
View Article and Find Full Text PDF