Publications by authors named "Petillo O"

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods.

View Article and Find Full Text PDF

Canine mammary tumours (CMTs) are the most common cancer in intact female dogs. In addition to surgery, additional targeted and non-targeted therapies may offer survival benefits to these patients. Therefore, exploring new treatments for CMT is a promising area in veterinary oncology.

View Article and Find Full Text PDF

Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo () milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC).

View Article and Find Full Text PDF

Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible for the transport of fatty acids across mitochondrial membranes for β-oxidation are deregulated in tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and cells.

View Article and Find Full Text PDF

Genetic alterations and/or epigenetic modifications occur frequently in the majority of cancer cells. In addition to playing a crucial role as promoters of tumorigenesis, these processes can also generate metabolic pathways that are different from those in normal cells. Besides the Warburg effect, an alteration in lipid metabolism is also found in cancer cells.

View Article and Find Full Text PDF

The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration.

View Article and Find Full Text PDF

Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress-especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration.

View Article and Find Full Text PDF

In this study, chestnut shells (CS) were used in order to obtain bioactive compounds through different extraction procedures. The aqueous extracts were chemically characterized. The highest extraction yield and total phenolic content was obtained by conventional liquid extraction (CLE).

View Article and Find Full Text PDF

Fluoride-releasing restorative dental materials can be beneficial to remineralize dentin and help prevent secondary caries. However, the effects of fluoride release from dental materials on the activity of dental pulp stem cells are not known. Here we investigate whether different fluoride release kinetics from dental resins supplemented with modified hydrotalcite (RK-F10) or fluoride-glass filler (RK-FG10) could influence the behavior of a human dental pulp stem cell subpopulation (STRO-1(+) cells) known for its ability to differentiate toward an odontoblast-like phenotype.

View Article and Find Full Text PDF

The diagnosis of glioblastoma is still based on tumor histology, but emerging molecular diagnosis is becoming an important part of glioblastoma classification. Besides the well-known cell cycle-related circuitries that are associated with glioblastoma onset and development, new insights may be derived by looking at pathways involved in regulation of epigenetic phenomena and cellular metabolism, which may both be highly deregulated in cancer cells. We evaluated if in glioblastoma patients the high grade of malignancy could be associated with aberrant expression of some genes involved in regulation of epigenetic phenomena and lipid metabolism.

View Article and Find Full Text PDF

Objectives: The aim of this work was the preparation of a new fluoride-releasing dental material characterized by a release of fluoride relatively constant over time without any initial toxic burst effect. This type of delivery is obtained by a matrix controlled elution and elicits the beneficial effect of a low amount of fluoride on human dental pulp stem cells (hDPSCs) towards mature phenotype.

Methods: The modified hydrotalcite intercalated with fluoride ions (LDH-F), used as filler, was prepared via ion exchange procedure and characterized by X-ray diffraction and FT-IR spectroscopy.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to achieve detailed biomaterials characterization of a drug delivery system for local cancer treatment based on electrospun titanocene trichloride-loaded resorbable polycaprolactone (PCL) fibers.

Methods: The PCL fibers were characterized for their structural, morphologic and physical properties. The drug release kinetics of the titanocene complex was investigated at different concentrations, to obtain a set of correlations between structure and tuneable release.

View Article and Find Full Text PDF

Background: The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria.

Methods: ST1326 was tested on in vitro and in vivo models of Burkitt's lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed.

View Article and Find Full Text PDF

The ultrasmall size and unique properties of polymeric nanoparticles (NPs) have led to raising concerns about their potential cyto- and genotoxicity on biological systems. Polyethylenimine (PEI) is a highly positive charged polymer and is known to have varying degree of toxic effect to cells based on its chemical structure (i.e.

View Article and Find Full Text PDF

Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise.

View Article and Find Full Text PDF

Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart.

View Article and Find Full Text PDF

Growth factors and other regulatory molecules are required to direct differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) along specific lineages. However, the therapeutic use of growth factors is limited by their susceptibility to degradation, and the need to maintain prolonged local release of growth factor at levels sufficient to stimulate hMSC. The aim of this study was to investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus enhance hMSC stimulation.

View Article and Find Full Text PDF

In the large intestine organic cation transporter type-2 (OCTN2) is recognized as a transporter of compounds such as carnitine and colony sporulation factor, promoting health of the colon intestinal epithelium. Recent reports suggest that OCTN2 expression in small intestine is under control of peroxisome proliferator-activated receptor-alpha (PPARalpha). However, PPARalpha contribution to colonic OCTN2 expression remains controversial.

View Article and Find Full Text PDF

The major aim of nonviral delivery systems for gene therapy is to mediate high levels of gene expression with low toxicity. Nowadays, one of the most successful synthetic polycations used in gene delivery research is poly(ethylenimine) (PEI) in its high-molecular weight (HMW) branched form. However, PEI is not the ideal transfection agent in vivo because of its overwhelming cytotoxicity.

View Article and Find Full Text PDF

Porous scaffolds for tissue engineering applications based on poly(D,L-lactide)/poly(epsilon-caprolactone) compatibilized blends are described. The addition of a third polymer, namely poly( D, L-lactide-co-caprolactone) copolymer, has a profound effect on morphological properties of the blends scaffolds. In fact, the copolymer acts as compatibilizing agent and reduces the dimension of the dispersed phase of an order of magnitude.

View Article and Find Full Text PDF

Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1).

View Article and Find Full Text PDF

Carnitine transporters have recently been implicated in susceptibility to inflammatory bowel disease (IBD). Because carnitine is required for beta-oxidation, it was suggested that decreased carnitine transporters, and hence reduced carnitine uptake, could lead to impaired fatty acid oxidation in intestinal epithelial cells, and to cell injury. We investigated this issue by examining the expression of the carnitine transporters OCTN2 and ATB0+, and butyrate metabolism in colonocytes in a rat model of IBD induced by trinitrobenzene sulfonic acid (TNBS).

View Article and Find Full Text PDF

Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of beta-oxidation flux by labeled palmitate demonstrates that tBid inhibits beta-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1).

View Article and Find Full Text PDF

Background And Aims: Ulcerative colitis (UC) is characterised by refractory inflammatory ulceration and damage to the colon. The mechanisms underlying impaired healing have yet to be defined. As transglutaminase expression resulting in matrix protein cross linking is associated with increased wound healing in a rat model of colitis, we hypothesised that different types of transglutaminase might also play a role in UC.

View Article and Find Full Text PDF