Publications by authors named "Petibois C"

Microscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam.

View Article and Find Full Text PDF

The new Brain Imaging Beamline (BIB) of the Taiwan Photon Source (TPS) has been commissioned and opened to users. The BIB and in particular its endstation are designed to take advantage of bright unmonochromatized synchrotron X-rays and target fast 3D imaging, ∼1 ms exposure time plus very high ∼0.3 µm spatial resolution.

View Article and Find Full Text PDF

Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression.

View Article and Find Full Text PDF

Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution.

View Article and Find Full Text PDF

Determining the filtration function and biochemical status of kidney at the single glomerulus level remains hardly accessible, even from biopsies. Here, we provide evidence that IR spectro-microscopy is a suitable method to account for the filtration capacity of individual glomeruli along with related physio-pathological condition. A ∼4 μm voxel resolution 3D IR image reconstruction is built from consecutive tissue sections, thus, providing a 3D IR spectrum matrix of an individual glomerulus.

View Article and Find Full Text PDF

Mid-infrared (IR), Raman, and X-ray fluorescence (XRF) spectroscopy methods, as well as mass spectrometry (MS), can be used for 3D chemical imaging. These techniques offer an invaluable opportunity to access chemical features of biological samples in a nonsupervised way. The global chemical information they provide enables the exploitation of a large array of chemical species or parameters, so-called 'spectromics'.

View Article and Find Full Text PDF

Asbestos may cause adverse effects, but relationship between mineralogy and texture of fibres versus toxicity is still lacking. Toxicological studies can be interpreted and compared only if quantitative features of fibres are determined. Here, riebeckitic ("crocidolite") amphibole fibres were analysed by XRPD, FTIR, SEM-EDS and EMP-WDS; only crystals with stochiometry Na(FeMg)FeSiO(OH) are present in the starting material used for the experiments.

View Article and Find Full Text PDF

Fasted or weight-category athletes manage their training under strict diet conditions that could impair the stress-recovery balance and result in acute or chronic fatigue. However, to date, no validated biomarker are available to quantify this phenomena. The aim of this study was to assess the validity of a specific index combining plasma albumin and weight change to detect nutrition-related risks of fatigue increase and under-performance in athletes experiencing particular nutritional conditions.

View Article and Find Full Text PDF

Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra.

View Article and Find Full Text PDF
Article Synopsis
  • Nanoparticles, specifically gold nanoparticles (AuNPs), are effective for targeted delivery in brain cancer therapy, facilitating high-resolution imaging for analyzing their transport from microvasculature to tumors.
  • The study employed in vivo and post-mortem imaging techniques, revealing important details of the connection between glioma cells and the surrounding blood vessels while also showing leakage of AuNPs from tumor-associated microvessels.
  • The findings suggest that AuNPs could enhance various imaging methods and successfully identified glioma cells, tracked tumor progression, and highlighted significant differences in nanoparticle leakage between tumor and normal vasculature.
View Article and Find Full Text PDF

FTIR spectroscopy is used to identify poly-L-lysin fatty-acyl-chain (PLL-FAC) conjugates based on structural differences found between FAC species. Twenty-one PLL-FAC models were used, from C8 to C24, and with up to 5 unsaturation levels (C20:5). Curve fitting of the 3050-2800 cm(-1) spectral interval permitted extraction of IR bands belonging to the stretching vibration modes of methyl, methylene, and alkene groups.

View Article and Find Full Text PDF

In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features.

View Article and Find Full Text PDF

Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins.

View Article and Find Full Text PDF

Amphiboles caused cohorts of deaths in exposed workers, leading to some of the largest class actions in the industry. Once inhaled, these inorganic fibers are thought to be both chemically and morphologically toxic, and their biopersistence in the lungs over decades lead to progressive pathologies, mesothelioma, and asbestosis. However, this exceptionally long chronicity for human pathologies suggests that chemical toxicity is certainly low, suggesting that morphological parameters could be more relevant in the pathology.

View Article and Find Full Text PDF

We show that sufficient concentrations of gold nanoparticles produced by an original synthesis method in EMT-6 and CT-26 cancer cells make it possible to detect the presence, necrosis and proliferation of such cells after inoculation in live mice. We first demonstrated that the nanoparticles do not interfere with the proliferation process. Then, we observed significant differences in the tumor evolution and the angiogenesis process after shallow and deep inoculation.

View Article and Find Full Text PDF

FTIR imaging of individual cells is still limited by the low signal-to-noise ratio obtained from analysis of such weakly absorbing organic matter when using a Globar IR source. In this study, we used FTIR imaging with a synchrotron radiation source and a focal plane array detector to determine changes in the cellular contents of cryofixed cells after culture for 48 h on Si(3)N(4) substrate. Several spectral differences were observed for cells deprived of glucose compared with control cells: a lower amide I-to-amide II ratio (P < 0.

View Article and Find Full Text PDF

We demonstrate that, with appropriate staining, high-resolution X-ray microscopy can image complicated tissue structures--cerebellum and liver--and resolve large or small amounts of Au nanoparticles in these tissues. Specifically, images of tumor tissue reveal high concentrations of accumulated Au nanoparticles. PEG (poly(ethylene glycol)) coating is quite effective in enhancing this accumulation and significantly modifies the mechanism of uptake by reticuloendothelial system (RES) organs.

View Article and Find Full Text PDF

An original synthesis method based on X-ray irradiation produced gold nanoparticles (AuNPs) with two important properties for biomedical research: intense visible photoluminescence and very high accumulation in cancer cells. The nanoparticles, coated with MUA (11-mercaptoundecanoid acid), are very small (1.4 nm diameter); the above two properties are not present for even slightly larger sizes.

View Article and Find Full Text PDF

Collagens are a family of at least 30 protein types organized as networks. They constitute the main support material of cells under the form of extracellular matrix as well as for membranes in vessels, organs, and tissue compartments. Collagen network abnormalities are at the origin of many diseases, including myopathies and fibroses.

View Article and Find Full Text PDF

Background: Angiogenesis is widely investigated in conjunction with cancer development, in particular because of the possibility of early stage detection and of new therapeutic strategies. However, such studies are negatively affected by the limitations of imaging techniques in the detection of microscopic blood vessels (diameter 3-5 μm) grown under angiogenic stress. We report that synchrotron-based X-ray imaging techniques with very high spatial resolution can overcome this obstacle, provided that suitable contrast agents are used.

View Article and Find Full Text PDF

Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (<10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities.

View Article and Find Full Text PDF