Chemokines are small proteins involved in recruiting leukocytes to sites of inflammation via interactions with specific cell surface receptors. CCL22 is a chemokine known to play a critical role in inflammatory diseases such as atopic dermatitis and asthma; inhibition of this chemokine therefore represents an attractive therapeutic strategy. Herein, we describe the discovery of cyclic d-sulfopeptide inhibitors of CCL22 identified through mirror-image mRNA display with genetic reprogramming.
View Article and Find Full Text PDFThe chemokine receptors CCR1 and CCR5 display overlapping expression patterns and ligand dependency. Here we find that ligand activation of CCR5, not CCR1, is dependent on N-terminal receptor O-glycosylation. Release from O-glycosylation dependency is obtained by increasing CCR5 N-terminus acidity to the level of CCR1.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a malignancy of immature myeloid blast cells with stem-like and chemoresistant cells being retained in the bone marrow through CXCL12-CXCR4 signaling. Current CXCR4 inhibitors mobilize AML cells into the bloodstream where they become more chemosensitive have failed to improve patient survival, likely reflecting persistent receptor localization on target cells. Here we characterize the signaling properties of CXCL12-locked dimer (CXCL12-LD), a bioengineered variant of the dimeric CXCL12 structure.
View Article and Find Full Text PDFJ Behav Health Serv Res
January 2025
Despite a wealth of evidence-based messaging on youth alcohol and drug prevention, there remains a dearth of research on how to construct and deliver these messages effectively. Communication science is useful for increasing the efficacy of these messages in reducing substance use risk among youth. This study explores the perspectives of youth and youth-serving providers to identify theory-informed substance use prevention messages and strategies and how the content and delivery of prevention messages evolved during the COVID-19 pandemic.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are pivotal therapeutic targets, but their complex structure poses challenges for effective drug design. Nanobodies, or single-domain antibodies, have emerged as a promising therapeutic strategy to target GPCRs, offering advantages over traditional small molecules and antibodies. However, an incomplete understanding of the structural features enabling GPCR-nanobody interactions has limited their development.
View Article and Find Full Text PDFPlants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal '*' module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality.
View Article and Find Full Text PDFFragment-based drug discovery (FBDD) identifies low molecular weight compounds that can be developed into ligands with high affinity and selectivity for therapeutic targets. Screening fragment libraries (<10,000 molecules) with biophysical techniques against macromolecules provides information about novel chemical spaces that bind the macromolecule and scaffolds that can be modified to increase potency. A fragment-screening pipeline requires a standardized protocol for target selection, library assembly and maintenance, library screening, and hit validation to ensure hit integrity.
View Article and Find Full Text PDFChemokines are from a family of secreted cytokines that direct the trafficking of immune cells to coordinate immune responses. Chemokines are involved in numerous disease states, including responding to infections, autoimmune disorders, and cancer metastasis. Ther are chemokines, like CCL21, that signal for cellular migration through the activation of G protein-coupled receptors, like CCR7, through interaction with the receptor's extracellular N-terminus, loops, and core of the receptor.
View Article and Find Full Text PDFBackground: Chemokines represent a superfamily of immune-modulatory small protein molecules that regulate leukocyte migration to inflammatory sites through their chemoattractant and cell signaling properties. This review focuses on the immunological functions of the CCR6 chemokine receptor and is chemokine ligand, CCL20, that contribute to it role in inflammation in human psoriasis.
Methods: Peer-reviewed relevant articles are searched and selected from 2000 to 2022 using the search engines including PubMed and Google Scholar.
Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding.
View Article and Find Full Text PDFA novel engineered CCL20 locked dimer (CCL20LD) is nearly identical to the naturally occurring chemokine CCL20 but blocks CCR6-mediated chemotaxis and offers a new approach to treat the diseases of psoriasis and psoriatic arthritis. Methods for quantifying CCL20LD serum levels are needed to assess pharmacokinetics parameters and evaluate drug delivery, metabolism, and toxicity. Existing ELISA kits fail to discriminate between CCL20LD and the natural chemokine, CCL20WT (the wild type monomer).
View Article and Find Full Text PDFThe mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits.
View Article and Find Full Text PDFProtein aggregation is a hallmark of the polyglutamine diseases. One potential treatment for these diseases is suppression of polyglutamine aggregation. Previous work identified the cellular slime mold as being naturally resistant to polyglutamine aggregation.
View Article and Find Full Text PDFTriphenylphosphonium (TPP) conjugated compounds selectively target cancer cells by exploiting their hyperpolarized mitochondrial membrane potential. To date, studies have focused on modifying either the linker or the cargo of TPP-conjugated compounds. Here, we investigated the biological effects of direct modification to TPP to improve the efficacy and detection of mito-metformin (MMe), a TPP-conjugated probe we have shown to have promising preclinical efficacy against solid cancer cells.
View Article and Find Full Text PDFFission protein 1 (FIS1) and dynamin-related protein 1 (DRP1) were initially described as being evolutionarily conserved for mitochondrial fission, yet in humans the role of FIS1 in this process is unclear and disputed by many. In budding yeast where Fis1p helps to recruit the DRP1 ortholog from the cytoplasm to mitochondria for fission, an N-terminal "arm" of Fis1p is required for function. The yeast Fis1p arm interacts intramolecularly with a conserved tetratricopeptide repeat core and governs in vitro interactions with yeast DRP1.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) recruit β-arrestins to coordinate diverse cellular processes, but the structural dynamics driving this process are poorly understood. Atypical chemokine receptors (ACKRs) are intrinsically biased GPCRs that engage β-arrestins but not G proteins, making them a model system for investigating the structural basis of β-arrestin recruitment. Here, we performed nuclear magnetic resonance (NMR) experiments on CH-ε-methionine-labeled ACKR3, revealing that β-arrestin recruitment is associated with conformational exchange at key regions of the extracellular ligand-binding pocket and intracellular β-arrestin-coupling region.
View Article and Find Full Text PDFA general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile.
View Article and Find Full Text PDFTreatment options for human cytomegalovirus (CMV) remain limited and are associated with significant adverse effects and the selection of resistant CMV strains in transplant recipients and congenitally infected infants. Although most approved drugs target and inhibit the CMV DNA polymerase, additional agents with distinct mechanisms of action are needed for the treatment and prevention of CMV. In a large high throughput screen using our CMV-luciferase reporter Towne, we identified several unique inhibitors of CMV replication.
View Article and Find Full Text PDFThe chemokine receptor CCR7 and its ligands CCL19 and CCL21 regulate the lymph node homing of dendritic cells and naïve T-cells and the following induction of a motile DC-T cell priming state. Although CCL19 and CCL21 bind CCR7 with similar affinities, CCL21 is a weak agonist compared to CCL19. Using a chimeric chemokine, CCL19, harboring the N-terminus and the C-terminus of CCL21 attached to the core domain of CCL19, we show that these parts of CCL21 act in a synergistic manner to lower ligand potency and determine the way CCL21 engages with CCR7.
View Article and Find Full Text PDFThe human chemokines CCL19 and CCL21 bind to the G protein-coupled receptor (GPCR) CCR7 and play an important role in the trafficking of immune cells as well as cancer metastasis. Conserved binding sites for sulfotyrosine residues on the receptor contribute significantly to the chemokine/GPCR interaction and have been shown to provide promising targets for new drug-discovery efforts to disrupt the chemokine/GPCR interaction and, consequently, tumor metastasis. Here, we report the first X-ray crystal structure of a truncated CCL19 (residues 7-70) at 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Abscisic acid (ABA) is a key plant hormone that mediates both plant biotic and abiotic stress responses and many other developmental processes. ABA receptor antagonists are useful for dissecting and manipulating ABA's physiological roles in vivo. We set out to design antagonists that block receptor-PP2C interactions by modifying the agonist opabactin (OP), a synthetically accessible, high-affinity scaffold.
View Article and Find Full Text PDFThe pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine.
View Article and Find Full Text PDFLike most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined.
View Article and Find Full Text PDF