Publications by authors named "Petermann E"

Introduction: Data on outdoor radon are generally scarce compared to indoor radon. However, knowledge of the spatial distribution of outdoor radon is necessary to estimate the overall exposure of the population to radon, it supports the prediction of indoor radon and characterizes the natural radon background. Germany has a comprehensive dataset on long-term outdoor radon concentration and the equilibrium factor at national level, which allowed to produce what is probably the only spatially continuous outdoor radon map at national level so far.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas that poses a significant lung cancer risk. Subsurface fault zones can act as pathways for fluid and gas migration, potentially amplifying Rn accumulation. This study investigates the impact of fault zones on Rn concentrations within a 25 km area in the Northern Upper Rhine Graben, Germany - a region with available detailed geophysical exploration data and active neotectonic faulting.

View Article and Find Full Text PDF

Background: Radon is a carcinogenic, radioactive gas that can accumulate indoors and is undetected by human senses. Therefore, accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas.

Objectives: Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian DNA replication requires various helicases and nucleases for accurate genetic duplication, but the direction of these activities was previously unclear.
  • The study identifies USP50 as a crucial chromatin-associated protein that aids in ongoing replication, fork restart, and telomere maintenance, while also preventing DNA breaks.
  • USP50 works by ensuring the correct localization of other proteins like WRN and FEN1 during stalled replication, and its absence leads to increased activity of certain helicases and nucleases, causing replication issues and telomere instability.
View Article and Find Full Text PDF

Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress.

View Article and Find Full Text PDF

Radon is a radioactive gas and a major source of ionizing radiation exposure for humans. Consequently, it can pose serious health threats when it accumulates in confined environments. In Europe, recent legislation has been adopted to address radon exposure in dwellings; this law establishes national reference levels and guidelines for defining Radon Priority Areas (RPAs).

View Article and Find Full Text PDF

A German dataset with soil-plant transfer factors for radiocaesium including many co-variables was analysed and prepared for the application of the Random Forest (RF) algorithm using the R libraries 'party', and 'caret'. A RF predictive model for soil-plant transfer factor was created based on 10 co-variables. These are, for example, taxonomic plant family, plant part, soil type and the exchangeable potassium concentration in the soil.

View Article and Find Full Text PDF

Groundwater discharge into the sea occurs along many coastlines around the world in different geological settings and constitutes an important component of global water and matter budget. Estimates of how much water flows into the sea worldwide vary widely and are largely based on onshore studies and hydrological or hydrogeological modeling. In this study, we propose an approach to quantify a deep submarine groundwater outflow from the seafloor by using autonomously measured ocean surface data, i.

View Article and Find Full Text PDF

Temporal dynamic as well as spatial variability of environmental radon are controlled by factors such as meteorology, lithology, soil properties, hydrogeology, tectonics, and seismicity. In addition, indoor radon concentration is subject to anthropogenic factors, such as physical characteristics of a building and usage pattern. New tools for spatial and time series analysis and prediction belong to what is commonly called machine learning (ML).

View Article and Find Full Text PDF

Mapping radon (Rn) distribution patterns in the coastal sea is a widely applied method for localizing and quantifying submarine groundwater discharge (SGD). While the literature reports a wide range of successful case studies, methodical problems that might occur in shallow wind-exposed coastal settings are generally neglected. This paper evaluates causes and effects that resulted in a failure of the radon approach at a distinct shallow wind-exposed location in the Baltic Sea.

View Article and Find Full Text PDF

By sequencing sites of mitotic DNA synthesis in cells lacking homologous recombination, Groelly, Bhowmick, and colleagues show how conflicts between transcription and replication in early S phase can cause under-replicated DNA to persist into mitosis.

View Article and Find Full Text PDF

RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes.

View Article and Find Full Text PDF

The detrimental health effects of radon have been acknowledged by national and international legislation such as the European Union Basic Safety Standards (EURATOM-BSS Article 103/3) which requires member states to delineate radon priority areas. These radon priority areas are conventionally based on the concept of hazard by using indoor radon concentration or geogenic radon potential for its delineation. While this approach is efficient for finding many affected buildings with limited resources and, hence, reducing the individual risk, it is probably inefficient for reducing the collective risk if hazard and risk areas differ.

View Article and Find Full Text PDF

Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer.

View Article and Find Full Text PDF

Background: Information about airborne pollen concentrations is required by a range of end users, particularly from the health sector who use both observations and forecasts to diagnose and treat allergic patients. Manual methods are the standard for such measurements but, despite the range of pollen taxa that can be identified, these techniques suffer from a range of drawbacks. This includes being available at low temporal resolution (usually daily averages) and with a delay (usually 3-9 days from the measurement).

View Article and Find Full Text PDF

Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells.

View Article and Find Full Text PDF

Indoor radon is considered as an indoor air pollutant due to its carcinogenic effect. Since the main source of indoor radon is the ground beneath the house, we utilize the geogenic radon potential (GRP) and a geogenic radon hazard index (GRHI) for predicting the geogenic component of the indoor Rn hazard in Germany. For this purpose, we link indoor radon data (n = 44,629) to maps of GRP and GRHI and fit logistic regression models to calculate the probabilities that indoor Rn exceeds thresholds of 100 Bq/m and 300 Bq/m.

View Article and Find Full Text PDF

Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress.

View Article and Find Full Text PDF

The radioactive gas radon (Rn) is considered as an indoor air pollutant due to its detrimental effects on human health. In fact, exposure to Rn belongs to the most important causes for lung cancer after tobacco smoking. The dominant source of indoor Rn is the ground beneath the house.

View Article and Find Full Text PDF

Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol.

View Article and Find Full Text PDF

Exposure to indoor radon at home and in workplaces constitutes a serious public health risk and is the second most prevalent cause of lung cancer after tobacco smoking. Indoor radon concentration is to a large extent controlled by so-called geogenic radon, which is radon generated in the ground. While indoor radon has been mapped in many parts of Europe, this is not the case for its geogenic control, which has been surveyed exhaustively in only a few countries or regions.

View Article and Find Full Text PDF

Between the end of September and early October 2017, Ru was recorded by air monitoring stations across parts of Europe. In the environment, this purely anthropogenic radionuclide can be detected very rarely only. As far as known, Ru is only used in radiotherapy and possibly in radiothermal generators.

View Article and Find Full Text PDF

Here, we show that the cellular DNA replication protein and ATR substrate SMARCAL1 is recruited to viral replication centers early during adenovirus infection and is then targeted in an E1B-55K/E4orf6- and cullin RING ligase-dependent manner for proteasomal degradation. In this regard, we have determined that SMARCAL1 is phosphorylated at S123, S129, and S173 early during infection in an ATR- and CDK-dependent manner, and that pharmacological inhibition of ATR and CDK activities attenuates SMARCAL1 degradation. SMARCAL1 recruitment to viral replication centers was shown to be largely dependent upon SMARCAL1 association with the RPA complex, while Ad-induced SMARCAL1 phosphorylation also contributed to SMARCAL1 recruitment to viral replication centers, albeit to a limited extent.

View Article and Find Full Text PDF

BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis.

View Article and Find Full Text PDF