Publications by authors named "Peterlunger E"

Since 1988, through the United States government's founding, the National Center for Biotechnology Information (NCBI) has provided an invaluable service to scientific advancement. The universality and total freedom of use if on the one hand allow the use of this database on a global level by all researchers for their valuable work, on the other hand, it has the disadvantage of making it difficult to check the correctness of all the materials present. It is, therefore, of fundamental importance for the correctness and ethics of research to improve the databases at our disposal, identifying and amending the critical issues.

View Article and Find Full Text PDF

The grapevine source-to-sink ratio and berry exposure to solar radiation both influence grape flavonoid biosynthesis and accumulation. Here, we compared these concepts on cv. Merlot in two different growing locations (Michigan (MI) and Friuli-Venezia Giulia (FVG), IT) to understand whether the environment influences flavonoid sensitivity to these parameters.

View Article and Find Full Text PDF

Paleomicrobiology, the study of ancient microbiological material, allows us to understand different evolutionary phenomena in bacteria. In this study, eight bacilli isolated from an ancient Roman amphora, which dates to the IV to V sec. AD, were sequenced and functionally annotated.

View Article and Find Full Text PDF

In cool-climate viticulture, the short growing season can influence grape seed maturation by reducing the apparent oxidation of flavan-3-ol monomers and associated increase in seed browning. A reduction in seed maturation increases the potential extraction of flavan-3-ol monomers into wine during maceration operations, heightening bitterness. Here, we carried out a 2 × 2 factorial experiment to test the ability of freezing and heating treatments to advance maturation (decrease flavan-3-ol, improve browning) of (Vitis vinifera L.

View Article and Find Full Text PDF

The leaf of a deciduous species completes its life cycle in a few months. During leaf maturation, osmolyte accumulation leads to a significant reduction of the turgor loss point (Ψ ), a known marker for stomatal closure. Here we exposed two grapevine cultivars to drought at three different times during the growing season to explore if the seasonal decrease in leaf Ψ influences the stomatal response to drought.

View Article and Find Full Text PDF

In grapevine, the anatomy of xylem conduits and the non-structural carbohydrates (NSCs) content of the associated living parenchyma are expected to influence water transport under water limitation. In fact, both NSC and xylem features play a role in plant recovery from drought stress. We evaluated these traits in petioles of Cabernet Sauvignon (CS) and Syrah (SY) cultivars during water stress (WS) and recovery.

View Article and Find Full Text PDF

Grape seed maturation involves the gradual oxidation of tannins, decreasing excessive bitterness and astringency in wine. In cool climates, this process is limited by the short growing season, affecting wine quality. A "freeze-thaw" treatment on seeds of red vinifera cultivars at veraison and harvest was used to evaluate the effect of oxidation and extractability on seed phenolic fractions.

View Article and Find Full Text PDF

Background: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest.

View Article and Find Full Text PDF

Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit.

View Article and Find Full Text PDF

Postveraison water deficit is a common strategy implemented to improve fruit composition in many wine-growing regions. However, contrasting results are often reported on fruit size and composition, a challenge for generalizing the positive impact of this technique. Our research investigated the effect of water deficit (WD) imposed at veraison on Merlot grapevines, during two experimental seasons (2014-2015).

View Article and Find Full Text PDF

Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.

View Article and Find Full Text PDF

The development and accumulation of secondary metabolites in grapes determine wine color, taste, and aroma. This study aimed to investigate the effect of leaf removal before flowering, a practice recently introduced to reduce cluster compactness and Botrytis rot, on anthocyanin, tannin, and methoxypyrazine concentrations in 'Merlot' grapes and wines. Leaf removal before flowering was compared with leaf removal after flowering and an untreated control.

View Article and Find Full Text PDF

Background: Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality.

View Article and Find Full Text PDF

Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries.

View Article and Find Full Text PDF
Article Synopsis
  • Anthocyanin biosynthesis in grapevines is significantly increased during fruit ripening under drought conditions, with a recorded increase of 37-57% in anthocyanin content in water-stressed fruits.
  • The study highlights the correlation between the expression of anthocyanin-related genes, particularly UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT), and their impact on anthocyanin levels during ripening.
  • Water stress enhances the expression of genes associated with flavonoid pathways, resulting in a higher content of more complex anthocyanins like malvidin and peonidin, indicating that drought conditions influence both genetic and hormonal factors driving fruit maturation and anthocyan
View Article and Find Full Text PDF

Background: Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines.

Results: Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases.

View Article and Find Full Text PDF

In order to investigate the comparability of microsatellite profiles obtained in different laboratories, ten partners in seven countries analyzed 46 grape cultivars at six loci (VVMD5, VVMD7, VVMD27, VVS2, VrZAG62, and VrZAG79). No effort was made to standardize equipment or protocols. Although some partners obtained very similar results, in other cases different absolute allele sizes and, sometimes, different relative allele sizes were obtained.

View Article and Find Full Text PDF

Vitis vinifera L. plants were grown in containers and each plant's single shoot was orientated upwards or downwards. Some plants were trained first upwards, then downwards, then again upwards (N-shaped plants).

View Article and Find Full Text PDF