Publications by authors named "Peteranne Joel"

In 1990, the Seidmans showed that a single point mutation, R403Q, in the human β-myosin heavy chain (MHC) of heart muscle caused a particularly malignant form of familial hypertrophic cardiomyopathy (HCM) [Geisterfer-Lowrance AA, et al. (1990) Cell 62:999-1006.].

View Article and Find Full Text PDF

Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region.

View Article and Find Full Text PDF

The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott-Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire-actin particle.

View Article and Find Full Text PDF

Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD).

View Article and Find Full Text PDF

The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization.

View Article and Find Full Text PDF

Actin filament growth and disassembly, as well as affinity for actin-binding proteins, is mediated by the nucleotide-bound state of the component actin monomers. The structural differences between ATP-actin and ADP-actin, however, remain controversial. We expressed a cytoplasmic actin in Sf9 cells, which was rendered non-polymerizable by virtue of two point mutations in subdomain 4 (A204E/P243K).

View Article and Find Full Text PDF

We have succeeded in expressing actin in the baculovirus/Sf9 cell system in high yield. The wild-type (WT) actin is functionally indistinguishable from tissue-purified actin in its ability to activate ATPase activity and to support movement in an in vitro motility assay. Having achieved this feat, we used a mutational strategy to express a monomeric actin that is incapable of polymerization.

View Article and Find Full Text PDF

Each of the heads of the motor protein myosin II is capable of supporting motion. A previous report showed that double-headed myosin generates twice the displacement of single-headed myosin (Tyska, M.J.

View Article and Find Full Text PDF

Much interest has centered on two surface loops in the motor domain to explain the differences in enzymatic and mechanical properties of myosin isoforms. We showed that two invariant lysines at the C-terminal end of loop 2, which is part of the actin-binding interface, are required to obtain actin activation [Joel et al. (2001) J.

View Article and Find Full Text PDF

To better understand how skeletal muscle myosin molecules move actin filaments, we determine the motion-generating biochemistry of a single myosin molecule and study how it scales with the motion-generating biochemistry of an ensemble of myosin molecules. First, by measuring the effects of various ligands (ATP, ADP, and P(i)) on event lifetimes, tau(on), in a laser trap, we determine the biochemical kinetics underlying the stepwise movement of an actin filament generated by a single myosin molecule. Next, by measuring the effects of these same ligands on actin velocities, V, in an in vitro motility assay, we determine the biochemistry underlying the continuous movement of an actin filament generated by an ensemble of myosin molecules.

View Article and Find Full Text PDF