Publications by authors named "Peter van Tienderen"

Papers including articles that are produced because of the activities of LifeWatch ERIC, in the context of its second implementation period (2022 - 2026) and through the implementation of its new Strategic Working Plan, are published in this special collection. The articles include data papers, papers describing the development and functioning of analytical services and papers describing any other research outcome, produced either by LifeWatch ERIC or by any collaboration with any other ERIC, Research Infrastructure, global aggregator or other legal entity.

View Article and Find Full Text PDF

Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data-and the interpretation of the results-requires even more scrutiny than with diploid data. This is because of several polyploidy-specific complications in segregation and genotyping such as tetrasomy, double reduction, and missing dosage information.

View Article and Find Full Text PDF

Global climate change is predicted to increase water precipitation fluctuations and lead to localized prolonged floods in agricultural fields and natural plant communities. Thus, understanding the genetic basis of submergence tolerance is crucial in order to improve plant survival under these conditions. In this study, we performed a quantitative trait locus (QTL) analysis in Arabidopsis to identify novel candidate genes for increased submergence tolerance by using Kas-1 and Col (gl1) parental accessions and their derived recombinant inbred lines (RILs).

View Article and Find Full Text PDF
Article Synopsis
  • Climate change has led to more frequent and severe flooding, negatively affecting agricultural productivity by limiting essential growth processes in plants due to submersion.
  • The study focused on Arabidopsis thaliana to analyze molecular responses to submergence, revealing that early transcriptional and posttranscriptional changes were conserved across different accessions while also uncovering unique genotype-specific responses.
  • Findings indicated significant organ-specific adjustments in the transcriptomes, with roots showing increased expression of photosynthesis-related genes, and rosette changes linked to developmental regulation, highlighting the genetic variation in submergence tolerance mechanisms.
View Article and Find Full Text PDF

The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance.

View Article and Find Full Text PDF

Development of chilling and freezing tolerance is complex and can be affected by photoperiod, temperature and photosynthetic performance; however, there has been limited research on the interaction of these three factors. We evaluated 108 recombinant inbred lines of Boechera stricta, derived from a cross between lines originating from Montana and Colorado, under controlled long day (LD), short-day (SD) and in an outdoor environment (OE). We measured maximum quantum yield of photosystem II, lethal temperature for 50% survival and electrolyte leakage of leaves.

View Article and Find Full Text PDF

Flooding events negatively affect plant performance and survival. Flooding gradients thereby determine the dynamics in vegetation composition and species abundance. In adaptation to flooding, the group VII Ethylene Response Factor genes (ERF-VIIs) play pivotal roles in rice and Arabidopsis through regulation of anaerobic gene expression and antithetical survival strategies.

View Article and Find Full Text PDF

Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis thaliana). We studied plant survival, changes in carbohydrate and metabolite concentrations, and transcriptome responses to submergence of two species, Rorippa sylvestris and Rorippa amphibia.

View Article and Find Full Text PDF

Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids.

View Article and Find Full Text PDF

Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised.

View Article and Find Full Text PDF

Many crops contain domestication genes that are generally considered to lower fitness of crop-wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness.

View Article and Find Full Text PDF

Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2.

View Article and Find Full Text PDF

With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency.

View Article and Find Full Text PDF

Background And Aims: Differential responses of closely related species to submergence can provide insight into the evolution and mechanisms of submergence tolerance. Several traits of two wetland species from habitats with contrasting flooding regimes, Rorippa amphibia and Rorippa sylvestris, as well as F(1) hybrid Rorippa × anceps were analysed to unravel mechanisms underlying submergence tolerance.

Methods: In the first submergence experiment (lasting 20 d) we analysed biomass, stem elongation and carbohydrate content.

View Article and Find Full Text PDF

Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it.

View Article and Find Full Text PDF

Premise Of The Study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their formation bottleneck, newly formed tetraploids start out with little variation.

View Article and Find Full Text PDF

Tetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids.

View Article and Find Full Text PDF

The river floodplain species Rorippa amphibia, Rorippa sylvestris, and their hybrid Rorippa x anceps were studied here, with the aim of identifying potential species differences with respect to flooding tolerance, and of assessing their expression in F1 hybrids. Parents and their F1 hybrids were subjected to three flooding treatments mimicking natural conditions, and growth-related and leaf morphological traits were compared. In contrast to R.

View Article and Find Full Text PDF

The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin is seen as a likely factor underlying selective advantages related to life in extreme climates and/or colonization ability. A history of colonization in itself, as well as a recent origin, and possibly a limited number of polyploidization events would all predict less genetic diversity in polyploids than in diploids.

View Article and Find Full Text PDF

The evolution of phenotypic plasticity is studied in a model with two reproductively isolated "species" in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes.

View Article and Find Full Text PDF

Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had the opposite effects. The increase in plant height under the low R/FR ratio was accompanied by a reduction in the number of leaves.

View Article and Find Full Text PDF

Quantitative genetic models are used to investigate the evolution of generalists and specialists in a coarse-grained environment with two habitat types when there are costs attached to being a generalist. The outcomes for soft and hard selection models are qualitatively different. Under soft selection (e.

View Article and Find Full Text PDF