Publications by authors named "Peter van Berkum"

Although forms highly effective symbioses with the comparatively acid-sensitive genus , its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant strains. has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with but also with the promiscuous host . Here we describe the genome of OR191 and genomic features important for the symbiotic interaction with both of these hosts.

View Article and Find Full Text PDF

10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of (L.

View Article and Find Full Text PDF

Here, we describe a novel clade within and consider how geographic and ecological isolation contributed to the limited distribution of this group. Members of the genus are best known for their ability to form nitrogen-fixing symbioses with forage legumes of three related genera, L., Mill.

View Article and Find Full Text PDF

USDA 76 (INSCD = ARAG00000000), the type strain for , is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, USDA 76 was selected as part of the DOE Joint Genome Institute 2010 sequencing project.

View Article and Find Full Text PDF

Cupriavidus sp. strain AMP6 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Mimosa asperata collected in Santa Ana National Wildlife Refuge, Texas, in 2005. Mimosa asperata is the only legume described so far to exclusively associates with Cupriavidus symbionts.

View Article and Find Full Text PDF

Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006.

View Article and Find Full Text PDF

Cupriavidus sp. strain UYPR2.512 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida grown in soils from a native forest of Uruguay.

View Article and Find Full Text PDF

From 2009 through 2011, a previously undescribed disease occurred on commercial parsley in coastal (Ventura County) California. Symptoms of the disease consisted of circular to oval, tan to brown leaf spots and resulted in loss of crop quality and, hence, reduced yields. A fungus was consistently isolated from symptomatic parsley.

View Article and Find Full Text PDF

A multilocus sequence typing (MLST) method based on allelic variation of seven chromosomal loci was developed for characterizing genotypes (GT) within the genus Bradyrhizobium. With the method, 29 distinct multilocus GT were identified among 190 culture collection soybean strains. The occupancy of 347 nodules taken from uninoculated field-grown soybean plants also was determined.

View Article and Find Full Text PDF

Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the diversity of 179 bean isolates recovered from six field sites in the Arcos de Valdevez region of northwestern Portugal. The isolates were divided into 6 groups based on the fingerprint patterns that were obtained. Representatives for each group were selected for sequence analysis of 4 chromosomal DNA regions.

View Article and Find Full Text PDF

The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M.

View Article and Find Full Text PDF

A multilocus sequence typing (MLST) analysis was used to examine the genetic structure and diversity within the two large extrachromosomal replicons in Medicago-nodulating rhizobia (Sinorhizobium meliloti and Sinorhizobium medicae). The allelic diversity within these replicons was high compared to the reported diversity within the corresponding chromosomes of the same strains (P. van Berkum et al.

View Article and Find Full Text PDF

The stable, low-molecular-weight (LMW) RNA fractions of several rhizobial isolates of Phaseolus vulgaris grown in the soil of Lanzarote, an island of the Canary Islands, were identical to a less-common pattern found within Sinorhizobium meliloti (assigned to group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northern Spain. The P. vulgaris isolates and the group II LMW RNA S.

View Article and Find Full Text PDF

The internally transcribed spacer (ITS) sequences of several members within each of 17 soybean bradyrhizobial serogroups were determined to establish whether the regions within all members of each serogroup were identical. The rationale was to provide a sequence-based alternative to serology. The objective also was to link the extensive older literature on soybean symbiosis based on serology with ITS sequence data for more recent isolates from both soybean and other legumes nodulated by rhizobia within the genus Bradyrhizobium.

View Article and Find Full Text PDF

Four different low molecular weight (LMW) RNA profiles, designated I-IV, among 179 isolates from Medicago, Melilotus and Trigonella species growing in a field site in Northern Spain were identified. From sequence analysis of the 16S rRNA, atpD and recA genes as well as DNA-DNA hybridization analysis with representatives of each LMW RNA profile it was evident that isolates with LMW RNA profiles I and II belonged to Sinorhizobium meliloti and those displaying profiles III and IV to Sinorhizobium medicae. Therefore, two distinct LMW RNA electrophoretic mobility profiles were found within each of these two species.

View Article and Find Full Text PDF

Multilocus sequence typing (MLST) is a sequence-based method used to characterize bacterial genomes. This method was used to examine the genetic structure of Medicago-nodulating rhizobia at the Amra site, which is located in an arid region of Tunisia. Here the annual medics Medicago laciniata and M.

View Article and Find Full Text PDF

Illinois bundleflower (Desmanthus illinoensis (Michx.) Macmillan) has potential as a grain and forage legume for the American Midwest. Inoculant-quality rhizobia for this legume have been identified but not previously characterized.

View Article and Find Full Text PDF

Multilocus sequence typing (MLST), a sequence-based method to characterize bacterial genomes, was used to examine the genetic structure in a large collection of Medicago-nodulating rhizobial strains. This is the first study where MLST has been applied in conjunction with eBURST analysis to determine the population genetic structure of nonpathogenic bacteria recovered from the soil environment. Sequence variation was determined in 10 chromosomal loci of 231 strains that predominantly originated from southwest Asia.

View Article and Find Full Text PDF

The symbiotic bradyrhizobia of Aeschynomene indica and the aquatic budding bacterium Blastobacter denitrificans have much in common and this study broadens the characters that are shared between the two. The 23S rRNA gene sequences of the bradyrhizobial isolates were most similar to each other and to the sequence of Bl. denitrificans.

View Article and Find Full Text PDF

The diversity and taxonomic relationships of 83 bean-nodulating rhizobia indigenous to Ethiopian soils were characterized by PCR-RFLP of the internally transcribed spacer (ITS) region between the 16S and 23S rRNA genes, 16S rRNA gene sequence analysis, multilocus enzyme electrophoresis (MLEE), and amplified fragment-length polymorphism. The isolates fell into 13 distinct genotypes according to PCR-RFLP analysis of the ITS region. Based on MLEE, the majority of these genotypes (70%) was genetically related to the type strain of Rhizobium leguminosarum.

View Article and Find Full Text PDF

Members of the genus Agrobacterium constitute a diverse group of organisms, all of which, when harbouring the appropriate plasmids, are capable of causing neoplastic growths on susceptible host plants. The agrobacteria, which are members of the family Rhizobiaceae, can be differentiated into at least three biovars, corresponding to species divisions based on differential biochemical and physiological tests. Recently, Young et al.

View Article and Find Full Text PDF

It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences.

View Article and Find Full Text PDF

Slowly growing, non-pigmented mycobacteria were isolated from striped bass (Morone saxatilis) during an epizootic of mycobacteriosis in the Chesapeake Bay. Growth characteristics, acid-fastness and results of 16S rRNA gene sequencing were consistent with those of the genus Mycobacterium. A unique profile of biochemical reactions was observed among the 21 isolates.

View Article and Find Full Text PDF

Amorpha fruticosa was inoculated with rhizosphere soil from Iowa, USA, and 140 rhizobia isolated from root nodules were compared with Mesorhizobium amorphae originating from Chinese soils. PCR-RFLP patterns of the 16S rRNA gene from the isolates and from M. amorphaewere the same.

View Article and Find Full Text PDF