Publications by authors named "Peter Zeman"

Article Synopsis
  • The common marmoset has become increasingly popular in neuroscience research over the past 20 years, especially for studying human brain diseases, but marmoset-specific research tools are often limited and must be created within labs.
  • A team has designed and tested various imaging and measurement techniques for studying marmosets, including MRI, PET, CT, and electrophysiology, and has made these designs publicly accessible to help ease the burden on researchers.
  • They provide numerous computer-aided design (CAD) files, software, and resources, including tools for neuroimaging and experimental stimuli, through the Marmoset Brain Connectome website to support further advancements in marmoset neuroscience.
View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) is gaining attention in the field of cognitive neuroscience. The development of an effective protocol for fMRI data acquisition in awake marmosets is a key factor in developing reliable comparative studies. Here, we describe a protocol to obtain fMRI data in awake marmosets using auditory and visual stimulation.

View Article and Find Full Text PDF

Background: The small common marmoset (Callithrix jacchus) is an ideal nonhuman primate for awake fMRI in ultra-high field small animal MRI scanners. However, it can often be challenging in task-based fMRI experiments to provide a robust stimulus within the MRI environment while using hardware (an RF coil and restraint system) that is compatible with awake imaging.

New Method: Here we present an RF coil and restraint system that permits unimpeded access to an awake marmoset's head subsequent to immobilization, thereby permitting the setup of peripheral devices and stimuli proximal to the head.

View Article and Find Full Text PDF

Social cognition is a dynamic process that requires the perception and integration of a complex set of idiosyncratic features between interacting conspecifics. Here we present a method for simultaneously measuring the whole-brain activation of two socially interacting marmoset monkeys using functional magnetic resonance imaging. MRI hardware (a radiofrequency coil and peripheral devices) and image-processing pipelines were developed to assess brain responses to socialization, both on an intra-brain and inter-brain level.

View Article and Find Full Text PDF

Many neuroscience applications have adopted functional MRI as a tool to investigate the healthy and diseased brain during the completion of a task. While ultra-high-field MRI has allowed for improved contrast and signal-to-noise ratios during functional MRI studies, it remains a challenge to create local radiofrequency coils that can accommodate an unobstructed visual field and be suitable for routine use, while at the same time not compromise performance. Performance (both during transmission and reception) can be improved by using close-fitting coils; however, maintaining sensitivity over the whole brain often requires the introduction of coil elements proximal to the eyes, thereby partially occluding the subject's visual field.

View Article and Find Full Text PDF

Purpose: Neurite Orientation Dispersion and Density Imaging (NODDI) is a diffusion MRI (dMRI) technique used to characterize tissue microstructure by compartmental modelling of neural water fractions. Intra-neurite, extra-neurite, and cerebral spinal fluid volume fractions are measured. The purpose of this study was to determine the reproducibility of NODDI in the rat brain at 9.

View Article and Find Full Text PDF

The close homology of monkeys and humans has increased the prevalence of non-human-primate models in functional MRI studies of brain connectivity. To improve upon the attainable resolution in functional MRI studies, a commensurate increase in the sensitivity of the radiofrequency receiver coil is required to avoid a reduction in the statistical power of the analysis. Most receive coils are comprised of multiple loops distributed equidistantly over a surface to produce spatially independent sensitivity profiles.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) is an increasingly popular animal model for translational neuroscience studies, during which anatomical and functional MRI can be useful investigative tools. To attain the requisite SNR for high-resolution acquisitions, the radiofrequency coil must be optimized for the marmoset; however, relatively few custom coils have been developed that maximize SNR and are compatible with accelerated acquisitions. For the study of large populations of animals, the heterogeneity in animal size reduces the effectiveness of a "one size fits all" approach to coil sizing and makes coils tailored to individual animals cost and time prohibitive.

View Article and Find Full Text PDF

Background: A reduction in right ventricular function commonly occurs in the early postoperative period after coronary artery bypass graft surgery (CABG). We sought to determine the longer-term effect of CABG on right ventricular function.

Methods: Cardiac magnetic resonance imaging was performed before and approximately 3 months after surgery in 28 patients undergoing elective CABG.

View Article and Find Full Text PDF

Left ventricular ballooning syndrome (LVBS), also known as Takotsubo cardiomyopathy, is characterized by regional left ventricular dysfunction associated with severe psychological stress. T2 weighted cardiac magnetic resonance (CMR) can identify myocardial edema due to ischemia or other insults. A standard clinical CMR scan with double inversion recovery fast spin echo T2 weighted sequences was performed on consecutive patients with LVBS.

View Article and Find Full Text PDF

Background: The clinical application of stem cell therapy for myocardial infarction will require the development of methods to monitor treatment and pre-clinical assessment in a large animal model, to determine its effectiveness and the optimum cell population, route of delivery, timing, and flow milieu.

Objectives: To establish a model for a) in vivo tracking to monitor cell engraftment after autologous transplantation and b) concurrent measurement of infarct evolution and remodeling.

Methods: We evaluated 22 dogs (8 sham controls, 7 treated with autologous bone marrow monocytes, and 7 with stromal cells) using both imaging of 111Indium-tropolone labeled cells and late gadolinium enhancement CMR for up to12 weeks after a 3 hour coronary occlusion.

View Article and Find Full Text PDF