Publications by authors named "Peter Zalar"

The conversion of light into electrical signal in a photodetector is a crucial process for a wide range of technological applications. Here we report a new device concept of dual-gate phototransistor that combines the operation of photodiodes and phototransistors to simultaneously enable high-gain and linear photoresponse without requiring external circuitry. In an oppositely biased, dual-gate transistor based on a solution-processed organic heterojunction layer, we find that the presence of both n- and p-type channels enables both photogenerated electrons and holes to efficiently separate and transport in the same semiconducting layer.

View Article and Find Full Text PDF

Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near-infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on-skin optoelectronic applications. Here, an ultraflexible near-IR responsive skin-conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene-pyridyl[2,1,3]thiadiazole-cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 10 bending cycles.

View Article and Find Full Text PDF

Flexible, transparent electrodes are a crucial component for future implantable and wearable systems. For practical applications, conductivity and flexibility should be further improved to prevent signal attenuation, heat generation, and disconnection. Herein, we fabricate an ultraflexible transparent electrode with low sheet resistance (8.

View Article and Find Full Text PDF

We demonstrate systematic work function tuning of thiol-based SAM-modified gold electrodes with high controllability and sensitivity as high as 0.05 eV using vacuum ultraviolet technique (VUV). Under different irradiation times, both work function and wettability of the metal surface is modified.

View Article and Find Full Text PDF

Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant.

View Article and Find Full Text PDF

Thin-film electronics intimately laminated onto the skin imperceptibly equip the human body with electronic components for health-monitoring and information technologies. When electronic devices are worn, the mechanical flexibility and/or stretchability of thin-film devices helps to minimize the stress and discomfort associated with wear because of their conformability and softness. For industrial applications, it is important to fabricate wearable devices using processing methods that maximize throughput and minimize cost.

View Article and Find Full Text PDF

Vacuum ultraviolet irradiation is used as a tool to systematically study the morphology, growth, and performance of small-molecule organic field-effect transistors. The surface energy can be carefully and precisely tuned by varying the dose of irradiation, allowing for the systematic study of the growth of an emerging organic semiconductor. This technique helps to methodically control the morphology and performance of organic semiconductors.

View Article and Find Full Text PDF

Through simple addition of a Lewis acid to a conjugated polymer bearing a Lewis basic heteroatom, the hole transport of the polymer can be effectively p-doped resulting in a two-orders increase in hole mobility. The temperature dependent hole transport of a variety of Lewis acid concentrations are explored.

View Article and Find Full Text PDF

Solution-processed perylenediimides (PDIs) with varying peri and bay substituents are characterized in order to better understand the relationships between molecular structure, solid state order, charge transport, and photovoltaic performance. It was found that bulky bay substituents interfere with molecular packing, leading to low charge transport and photovoltaic efficiencies compared to PDIs with fewer or less disruptive substituents. We assessed the potential of PDIs as acceptors for organic photovoltaics (OPVs) by utilizing a solution-processed bilayer OPV device architecture with the donor benzoporphyrin.

View Article and Find Full Text PDF

All-conjugated triblock polyfluorenes with well-defined molecular weights and low polydispersities are synthesized via chain-growth Suzuki-Miyaura polymerization. Ionization of pendant alkylbromide chains by pyridine affords amphiphilic triblock polyelectrolytes with neutral/charged/neutral or charged/neutral/charged segments. The immiscible blocks lead to aggregation in polar and nonpolar solvents, and to complex surface morphologies depending on the polarity of the substrate.

View Article and Find Full Text PDF

By inserting DNA interlayers beneath the Au contact, the contact resistance of PC(70) BM field-effect transistorss is reduced by approximately 30 times at a gate bias of 20 V. The electron and hole mobilities of ambipolar diketopyrrolopyrrole transistors are increased by one order of magnitude with a reduction of the threshold voltage from 12 to 6.5 V.

View Article and Find Full Text PDF

π-Conjugated, narrow band gap copolymers containing pyridal[2,1,3]thiadiazole (PT) were synthesized via starting materials that prevent random incorporation of the PT heterocycles relative to the backbone vector. Two regioregular structures could be obtained: in one the PTs are oriented in the same direction, and in the other the orientation of the PTs alternates every other repeat unit. Compared to their regiorandom counterparts, the regioregular polymers exhibit a 2 orders of magnitude increase of the hole mobilites, from 0.

View Article and Find Full Text PDF

Introduction of a DNA interlayer adjacent to an Al cathode in a polymer light-emitting diode leads to lower turn-on voltages, higher luminance efficiencies, and characteristics comparable to those observed using a Ba electrode. The DNA serves to improve electron injection and also functions as a hole-blocking layer. The temporal characteristics of the devices are consistent with an interfacial dipole layer adjacent to the electrode being responsible for the reduction of the electron injection barrier.

View Article and Find Full Text PDF

The properties and function of an anionic conjugated polyelectrolyte (CPE)-containing ion-conducting polyethylene oxide pendant (PF(PEO)CO(2)Na) as electron injection layers (EILs) in polymer light-emitting diodes (PLEDs) are investigated. A primary goal was to design a CPE structure that would enable acceleration of the device temporal response through facilitation of ion motion. Pristine PLEDs containing PF(PEO)CO(2)Na exhibit luminance response times on the order of tenths of seconds.

View Article and Find Full Text PDF

Water/alcohol-soluble quinacridone derivatives have been synthesized and utilized as an electron injection layer in organic light-emitting diodes. Initial results are very promising, as a device with a layer of Na(+)QHSO(3)(-) adjacent to an Al cathode exhibited a luminance efficiency (1.65 cd A(-1)) that was significantly enhanced relative to the efficiency (0.

View Article and Find Full Text PDF