Alzheimer's disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity.
View Article and Find Full Text PDFComposition of the brain extracellular matrix changes in time as maturation proceeds. Chondroitin sulfate proteoglycan 5 (CSPG-5), also known as neuroglycan C, has been previously associated to differentiation since it shapes neurite growth and synapse forming. Here, we show that this proteoglycan persists in the postnatal rat brain, and its expression is higher in cortical regions with plastic properties, including hippocampus and the medial prefrontal cortex at the end of the second postnatal week.
View Article and Find Full Text PDFBackground And Purpose: N,N-dimethyltryptamine (DMT) is an endogenous ligand of the Sigma 1 receptor (Sig-1R) with documented in vitro cytoprotective properties against hypoxia. Our aim was to demonstrate the in vivo neuroprotective effect of DMT following ischemia-reperfusion injury in the rat brain.
Methods: Transient middle cerebral occlusion (MCAO) was induced for 60 min in male Wistar rats using the filament occlusion model under general anaesthesia.
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells.
View Article and Find Full Text PDFStress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3 ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system.
View Article and Find Full Text PDF