J Control Release
February 2025
Diffusion is defined as general mechanism for drug release from advanced delivery systems, yet dynamic structure of dosage form intrinsically plays an unknown role. The synchrotron radiation X-ray micro-computed tomography (SR-μCT) three-dimensional (3D) imaging and in-depth analysis of 3D structures were applied to readily differentiate materials and accurately capture internal structure changes of multiple unit pellet system (MUPS) and the constituent pellets, visualizing internal 3D structure of a MUPS of theophylline tablets for their 3 levels hierarchy structures: pellets with rapid drug release characteristics, a protective cushion layer and a matrix layer. Drug release pathways were extracted from SR-μCT images and a 3D maze network was constructed using pore network analysis to quantify the internal structural evolution during drug release.
View Article and Find Full Text PDFDrug therapies for acute lung injury (ALI) are far from satisfactory, primarily because drugs cannot specifically target the lungs. Direct delivery of drugs to the deep alveolar regions by inhalation administration is crucial for the treatment of ALI. However, conventional inhalable carriers such as lactose and mannitol are generally inactive.
View Article and Find Full Text PDFDefining and visualizing the three-dimensional (3D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography (SR-μCT).
View Article and Find Full Text PDFChanges in structure of oral solid dosage forms (OSDF) elementally determine the drug release and its therapeutic effects. In this research, synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3D structure of enteric coated pellets recovered from the gastrointestinal tract of rats. The structures of pellets in solid state and compendium media were measured.
View Article and Find Full Text PDFThe creation of multiarticulated mechanisms for use with minimally invasive surgical tools is difficult because of fabrication, assembly, and actuation challenges on the millimeter scale of these devices. Nevertheless, such mechanisms are desirable for granting surgeons greater precision and dexterity to manipulate and visualize tissue at the surgical site. Here, we describe the construction of a complex optoelectromechanical device that can be integrated with existing surgical tools to control the position of a fiber-delivered laser.
View Article and Find Full Text PDFThe effective pulmonary deposition of inhaled particulate carriers loaded with drugs is a prerequisite for therapeutic effects of drug delivery via inhalation route. Revealing the sophisticated lung scaffold and intrapulmonary distribution of particles at three-dimensional (3D), in-situ, and single-particle level remains a fundamental and critical challenge for dry powder inhalation in pre-clinical research. Here, taking advantage of the micro optical sectioning tomography system, the high-precision cross-scale visualization of entire lung anatomy is obtained.
View Article and Find Full Text PDFHydrophilic matrix tablets are the most commonly used dosage forms to fabricate oral controlled-release systems. It is highly desirable to design delivery system with novel mechanism to achieve sustained drug release through a simplified preparation process. The chitosan-anionic polymers based matrix tablets is assumed to produce self-assembly in the gastrointestinal tract, then transferring into film-coated tablets from original matrix type.
View Article and Find Full Text PDFThe multiple-unit sustained-release (MUSR) dosage forms containing numerous sustained-release subunits present a reliable choice for oral formulation of controlled release systems. As a typical MUSR, the metoprolol succinate sustained-release tablet is an advanced system with limited researches devoted to relating its structure to the drug release phase other than the preparation process and modulation to the release behaviors. This research details a three-dimension method to image the internal structure and detail drug release features of commercial metoprolol succinate sustained-release tablets and component individual single pellets.
View Article and Find Full Text PDF: Targeted delivery of therapeutic drugs or imaging agents to injured blood vessels via nanocarriers is likely to be dependent on the particle shape, yet cubic nanoparticle carriers have not been reported for vascular targeting. Here, we demonstrate that cuboidal cyclodextrin frameworks possess superior hemostasis effect and injured vessels targeting compared with spherical counterpart. : Cuboidal and biocompatible γ-cyclodextrin metal-organic frameworks (CD-MOFs) are synthesized, tethered via crosslinking and surface modification with GRGDS peptide (GS5-MOFs).
View Article and Find Full Text PDFIt is essential to optimize a carrier of dry powder inhalation (DPI) for the aerodynamic deposition in vitro to achieve pulmonary delivery of drug molecules in vivo. In this study, neutralized nanoporous γ-cyclodextrin metal-organic framework (CD-MOF) crystals with cubic morphology and uniform inhalation size were developed and modified as a DPI carrier for budesonide (BUD). Cholesterol (CHO) and leucine (LEU)-poloxamer were used to modify the CD-MOF powder for the improvement of flowability and particle aerodynamic behaviour, for which the particle size distribution, Carr's index and in vitro pulmonary deposition were assessed.
View Article and Find Full Text PDFEur J Pharm Sci
September 2018
Smart microstructure design of dosage forms such as microcapsules that protect the microorganism, can improve probiotics survival from gastric pH challenges and prolong their shelf life. In this study, synchrotron radiation X-ray microcomputed tomography (SR-μCT) was applied to quantitatively reveal the material distributions and functional structures of bifidobacterium and lactobacillus microcapsules. The shell layer, middle protective layer, and the microorganisms as particles in the center layer were extracted and visualized.
View Article and Find Full Text PDFγ-Cyclodextrin metal-organic frameworks (γ-CD-MOFs) are highly porous and bio-friendly novel materials formed by γ-CD as an organic ligand and potassium ion as an inorganic metal centre. The aim of this study was to enhance the stability of vitamin A palmitate (VAP) using γ-CD-MOFs as the carrier. Herein, γ-CD-MOFs displayed VAP microencapsulating capacity of 9.
View Article and Find Full Text PDFOne unusual and challenging scientific field that has received only cursory attention to date is the three-dimensional (3D) microstructure and spatial distribution of drug(s) and formulation materials in solid dosage forms. This study aims to provide deeper insight into the relationships between the microstructure of multiple-unit pellet system (MUPS) tablets and the spatial distribution of the active pharmaceutical ingredient (API) and excipients to facilitate the design of quantitative models for drug delivery systems. Synchrotron radiation X-ray microcomputed tomography (SR-μCT) was established as a 3D structure elucidation technique, which, in conjunction with liquid chromatography coupled to mass spectrometry (LC-MS) or liquid chromatography with evaporative light-scattering detector (LC-ELSD) enables chemical analysis of tablets.
View Article and Find Full Text PDFDrug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.
View Article and Find Full Text PDFThis study investigated the formulation mechanism of microspheres via internal surfactant distribution. Eudragit L100 based microspheres loaded with bovine serum albumin were prepared by solid in oil in oil emulsion solvent evaporation method using acetone and liquid paraffin system containing sucrose stearate as a surfactant. The fabricated microspheres were evaluated for encapsulation efficiency, particle size, production yield, and release characteristics.
View Article and Find Full Text PDFMicrocrystalline cellulose (MCC) is one of the most important excipients due to its outstanding binding and tableting properties. Owing to the absence of high resolution characterization techniques at the single particle scale, 3D (three dimension) microstructure of MCC and its effects on formulation performance remain unexamined. The aim of this work was to establish a methodology for single particles of MCC type 102 based on synchrotron radiation X-ray micro computed tomography (SR-μCT), principal component analysis (PCA) and partial least square discriminant analysis (PLSDA).
View Article and Find Full Text PDFCyclodextrins (CD) are widely used bitter taste masking agents, for which the binding equilibrium constant (K) for the drug-CD complex is a conventional parameter for quantitating the taste masking effects. However, some exceptions have been reported to the expected relationship between K and bitterness reduction and the relationship between kinetic parameters of a drug-CD interaction, including association rate constant (K) and disassociation rate constant (K), and taste masking remains unexplored. In this study, based upon a database of kinetic parameters of drugs-HP-β-CD generated by Surface Plasmon Resonance Imaging for 485 drugs, the host-guest kinetic interactions between drugs and HP-β-CD for prediction of taste masking effects have been investigated.
View Article and Find Full Text PDFThis paper presents a miniature wrist that can be integrated into needle-sized surgical instruments. The wrist consists of a nitinol tube with asymmetric cutouts that is actuated by a single tendon to provide high distal curvature. We derive and experimentally validate kinematic and static models for the wrist and describe several prototype wrists, illustrating the straightforward fabrication and scalability of the design.
View Article and Find Full Text PDFThree advanced methods, high performance affinity chromatography (HPAC), surface plasmon resonance (SPR) and surface plasmon resonance imaging (SPRi) were compared and evaluated for determining the drug-cyclodextrin (CD) interactions herein. In total, 18 sparingly soluble drugs were selected for this comparative study. The three methods share a unique connection in the working principles and strategies.
View Article and Find Full Text PDFThe biocompatible and renewable cyclodextrin metal-organic frameworks (CD-MOFs) have addressed a range of opportunities in molecular storage and separation sciences. The reported protocols for their synthesis, however, were carried out at room temperature over long time periods of time (24h), producing crystals of relatively poor uniformity. In this investigation, micron sized γ-CD-MOFs were synthesized by an optimized vapor diffusion method at elevated temperature (50°C) within 6h, after which the size control, crystalline stability and drug adsorption behavior were investigated in detail.
View Article and Find Full Text PDFThe orifice drilled in the membrane as a channel for drug delivery is the key functional part of the osmotic pumps for a controlled drug release system. Reported conventional microscopic evaluations of these orifices have been limited to measurement of two-dimensional cross-section diameters. This study was aimed at establishing a novel method to measure quantitatively the three-dimensional architectures of orifices based on synchrotron radiation X-ray microcomputed tomography (SR-μCT).
View Article and Find Full Text PDFPolymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP).
View Article and Find Full Text PDFThe deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression.
View Article and Find Full Text PDFJ Phys Chem A
February 2016
The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level.
View Article and Find Full Text PDFOsmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent).
View Article and Find Full Text PDF