Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of living cells exposed to hostile protease-rich environments the dissolution of the shells and release of a protease inhibitor (antitrypsin).
View Article and Find Full Text PDFEnzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Z strongly boosted the loading (2.
View Article and Find Full Text PDFBecause of their efficiency, selectivity, and environmental sustainability, there are significant opportunities for enzymes in chemical synthesis and biotechnology. However, as the three-dimensional active structure of enzymes is predominantly maintained by weaker noncovalent interactions, thermal, pH, and chemical stressors can modify or eliminate activity. Metal-organic frameworks (MOFs), which are extended porous network materials assembled by a bottom-up building block approach from metal-based nodes and organic linkers, can be used to afford protection to enzymes.
View Article and Find Full Text PDFA biocatalytic system based on the zeolitic imidazolate framework-8 (ZIF-8) is obtained in a one-pot process by directly combining the enzyme horseradish peroxidase (HRP), iron oxide magnetic nanoparticles, the ligand and metal ions, in water at room temperature. The resulting system provides a useful platform for the next generation of reusable/repositionable biocatalysts.
View Article and Find Full Text PDFIn this study, we coupled a well-established whole-cell system based on E. coli via light-harvesting complexes to Rieske oxygenase (RO)-catalyzed hydroxylations in vivo. Although these enzymes represent very promising biocatalysts, their practical applicability is hampered by their dependency on NAD(P)H as well as their multicomponent nature and intrinsic instability in cell-free systems.
View Article and Find Full Text PDF