Publications by authors named "Peter W Reiners"

The Earth's deep biosphere hosts some of its most ancient chemolithotrophic lineages. The history of habitation in this environment is thus of interest for understanding the origin and evolution of life. The oldest rocks on Earth, formed about 4 billion years ago, are in continental cratons that have experienced complex histories due to burial and exhumation.

View Article and Find Full Text PDF

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.

View Article and Find Full Text PDF

In the deep biosphere, microbial sulfate reduction (MSR) is exploited for energy. Here, we show that, in fractured continental crystalline bedrock in three areas in Sweden, this process produced sulfide that reacted with iron to form pyrite extremely enriched in S relative to S. As documented by secondary ion mass spectrometry (SIMS) microanalyses, the δ S values are up to +132‰V-CDT and with a total range of 186‰.

View Article and Find Full Text PDF

Theoretical analysis predicts that enhanced erosion related to late Cenozoic global cooling can act as a first-order influence on the internal dynamics of mountain building, leading to a reduction in orogen width and height. The strongest response is predicted in orogens dominated by highly efficient alpine glacial erosion, producing a characteristic pattern of enhanced erosion on the windward flank of the orogen and maximum elevation controlled by glacier equilibrium line altitude, where long-term glacier mass gain equals mass loss. However, acquiring definitive field evidence of an active tectonic response to global climate cooling has been elusive.

View Article and Find Full Text PDF

Past studies of tectonically active mountain ranges have suggested strong coupling and feedbacks between climate, tectonics and topography. For example, rock uplift generates topographic relief, thereby enhancing precipitation, which focuses erosion and in turn influences rates and spatial patterns of further rock uplift. Although theoretical links between climate, erosion and uplift have received much attention, few studies have shown convincing correlations between observable indices of these processes on mountain-range scales.

View Article and Find Full Text PDF