Publications by authors named "Peter W J Rigby"

Background: The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts.

View Article and Find Full Text PDF

The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors.

View Article and Find Full Text PDF

The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.

View Article and Find Full Text PDF

We discuss the upstream regulators of myogenesis that lead to the activation of myogenic determination genes and subsequent differentiation, focusing on the mouse model. Key upstream genes, such as Pax3 and Pax7, Six1 and Six4, or Pitx2, participate in gene regulatory networks at different sites of skeletal muscle formation. MicroRNAs also intervene, with emerging evidence for the role of other noncoding RNAs.

View Article and Find Full Text PDF

The transcriptional regulatory network that controls the determination and differentiation of skeletal muscle cells in the embryo has at its core the four myogenic regulatory factors (MRFs) Myf5, MyoD, Mrf4 and MyoG. These basic helix-loop-helix transcription factors act by binding, as obligate heterodimers with the ubiquitously expressed E proteins, to the E-box sequence CANNTG. While all skeletal muscle cells have the same underlying function their progenitors arise at many sites in the embryo and it has become apparent that the upstream activators of the cascade differ in these various populations so that it can be switched on by a variety of inductive signals, some of which act by initiating transcription, some by maintaining it.

View Article and Find Full Text PDF

Pax3 and Pax7 regulate stem cell function in skeletal myogenesis. However, molecular insight into their distinct roles has remained elusive. Using gene expression data combined with genome-wide binding-site analysis, we show that both Pax3 and Pax7 bind identical DNA motifs and jointly activate a large panel of genes involved in muscle stem cell function.

View Article and Find Full Text PDF

The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches.

View Article and Find Full Text PDF

The transcriptional regulation of the Mrf4/Myf5 locus depends on a multitude of enhancers that, in equilibria with transcription balancing sequences and the promoters, regulate the expression of the two genes throughout embryonic development and in the adult. Transcription in a particular set of muscle progenitors can be driven by the combined outputs of several enhancers that are not able to recapitulate the entire expression pattern in isolation, or by the action of a single enhancer the activity of which in isolation is equivalent to that within the context of the locus. We identified a new enhancer element of this second class, ECR111, which is highly conserved in all vertebrate species and is necessary and sufficient to drive Myf5 expression in ventro-caudal and ventro-rostral somitic compartments in the mouse embryo.

View Article and Find Full Text PDF

In order to fully describe the expression pattern of the transcription factor FoxO1, we have screened the ES cell genetrap repository databases and obtained a clone that contains the ß-geo reporter gene inserted within intron 1 of FoxO1. We then used the ES cell clone to generate a new mouse strain (B6;129P2- Foxo1(Gt(AD0086)Wtsi/JJC)), which expresses ß-geo according to the endogenous FoxO1 pattern, and collected embryo stages from 7.0dpc to 18.

View Article and Find Full Text PDF

During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research.

View Article and Find Full Text PDF

During development, gene activation is stringently regulated to restrict expression only to the correct cell type and correct developmental stage. Here, we present mechanistic evidence that suggests DNA methylation contributes to this regulation by suppressing premature gene activation. Using the mouse Myogenin promoter as an example of the weak CpG island class of promoters, we find that it is initially methylated but becomes demethylated as development proceeds.

View Article and Find Full Text PDF

We have analysed the expression during mouse development of the four member Lingo/LERN gene family which encodes type 1 transmembrane proteins containing 12 extracellular leucine rich repeats, an immunoglobulin C2 domain and a short intracellular tail. Each family member has a distinct pattern of expression in the mouse embryo as is the case for the related NLRR, FLRT and LRRTM gene families. Lingo1/LERN1 is expressed in the developing trigeminal, facio-acoustic and dorsal root ganglia.

View Article and Find Full Text PDF

The linked Mrf4 and Myf5 genes encode two transcription factors essential for the determination and differentiation of skeletal muscle in the embryo. The locus is controlled by a multitude of interdigitated enhancers that activate gene expression at different times and in precisely defined progenitor cell populations. Manipulation of the enhancer-promoter composition of the locus reveals a novel mechanism for the regulation of such a gene cluster.

View Article and Find Full Text PDF

Mrf4 (Myf6) is a member of the basic helix-loop-helix (bHLH) myogenic regulatory transcription factor (MRF) family, which also contains Myod, Myf5 and myogenin. Mrf4 is implicated in commitment of amniote cells to skeletal myogenesis and is also abundantly expressed in many adult muscle fibres. The specific role of Mrf4 is unclear both because mrf4 null mice are viable, suggesting redundancy with other MRFs, and because of genetic interactions at the complex mrf4/myf5 locus.

View Article and Find Full Text PDF

Within the mammalian genome, there are many multimember gene families that encode membrane proteins with extracellular leucine rich repeats which are thought to act as cell adhesion or signalling molecules. We previously showed that the members of the NLRR gene family are expressed in a developmentally restricted manner in the mouse with NLRR-1 being expressed in the developing myotome. The FLRT gene family shows a similar genomic layout and predicted protein secondary structure to the NLRRs so we analysed expression of the three FLRT genes during mouse development.

View Article and Find Full Text PDF

We have analysed the expression during mid-gestation mouse development of the four member LRRTM gene family which encodes type 1 transmembrane proteins containing 10 extracellular leucine rich repeats and a short intracellular tail. Each family member has a developmentally regulated pattern of expression distinct from all other members. LRRTM1 is expressed in the neural tube, otic vesicle, apical ectodermal ridge, forebrain and midbrain up to a sharp central boundary.

View Article and Find Full Text PDF

During vertebrate embryogenesis, the somites form by segmentation of the trunk mesoderm, lateral to the neural tube, in an anterior to posterior direction. Analysis of differential gene expression during somitogenesis has been problematic due to the limited amount of tissue available from early mouse embryos. To circumvent these problems, we developed a modified differential display PCR technique that is highly sensitive and yields products that can be used directly as in situ hybridisation probes.

View Article and Find Full Text PDF

The myogenic regulatory factor Myf5 is integral to the initiation and control of skeletal muscle formation. In adult muscle, Myf5 is expressed in satellite cells, stem cells of mature muscle, but not in the myonuclei that sustain the myofibre. Using the Myf5(nlacZ/+) mouse, we now show that Myf5 is also constitutively expressed in muscle spindles-stretch-sensitive mechanoreceptors, while muscle denervation induces extensive reactivation of the Myf5 gene in myonuclei.

View Article and Find Full Text PDF

Myf5, the skeletal muscle determination gene, is first expressed in the dorso-medial aspect of the somite under the control of an element we have called the early epaxial enhancer. It has subsequently been reported that this enhancer is a direct target of Shh signaling mediated by Gli transcription factors (Gustafsson et al. 2002).

View Article and Find Full Text PDF

Myf5 is the first myogenic regulatory factor to be expressed in the mouse embryo and it determines the entry of cells into the skeletal muscle programme. A region situated between -58 kb and -48 kb from the gene directs Myf5 transcription at sites where muscles will form. We now show that this region consists of a number of distinct regulatory elements that specifically target sites of myogenesis in the somite, limbs and hypoglossal cord, and also sites of Myf5 transcription in the central nervous system.

View Article and Find Full Text PDF

Hox genes are key determinants of anteroposterior patterning of animal embryos, and spatially restricted expression of these genes is crucial to this function. In this study, we demonstrate that expression of Hoxb4 in the paraxial mesoderm of the mouse embryo is transcriptionally regulated in several distinct phases, and that multiple regulatory elements interact to maintain the complete expression domain throughout embryonic development. An enhancer located within the intron of the gene (region C) is sufficient for appropriate temporal activation of expression and the establishment of the correct anterior boundary in the paraxial mesoderm (somite 6/7).

View Article and Find Full Text PDF

Vertebrate myogenesis is controlled by four transcription factors known as the myogenic regulatory factors (MRFs): Myf5, Mrf4, myogenin and MyoD. During mouse development Myf5 is the first MRF to be expressed and it acts by integrating multiple developmental signals to initiate myogenesis. Numerous discrete regulatory elements are involved in the activation and maintenance of Myf5 gene expression in the various muscle precursor populations, reflecting the diversity of the signals that control myogenesis.

View Article and Find Full Text PDF

The development of skeletal muscle in vertebrate embryos is controlled by a transcriptional cascade involving the four myogenic regulatory factors. In the somites of the mouse embryo the order of expression is thought to be Myf5, Myogenin, Mrf4 and MyoD. We have re-examined the expression pattern of Mrf4 and show that in the hypaxial domain of thoracic somites (the somitic bud) Mrf4 expression precedes or is contemporaneous with that of Myf5, suggesting that this transcription factor plays a hitherto unsuspected role in myogenesis.

View Article and Find Full Text PDF