Periarthropathies The term "periarthropathy" stands for various pathologies "around" the joint and its structures, without a clear and generally accepted definition. This article tries to outline this theme and offers some examples in the section "ausgewählte Krankheitsbilder".
View Article and Find Full Text PDFIn the modern era, structural health monitoring (SHM) is critically important and indispensable in the aerospace industry as an effective measure to enhance the safety and consistency of aircraft structures by deploying a reliable sensor network. The deployment of built-in sensor networks enables uninterrupted structural integrity monitoring of an aircraft, providing crucial information on operation condition, deformation, and potential damage to the structure. Sustainable and durable piezoelectric nanogenerators (PENGs) with good flexibility, high performance, and superior reliability are promising candidates for powering wireless sensor networks, particularly for aerospace SHM applications.
View Article and Find Full Text PDFTau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation.
View Article and Find Full Text PDFSeveral studies have demonstrated that proteasome activity decreases whereas protein oxidation increases with aging in various tissues. However, no studies are available correlating both parameters directly comparing different tissues of one organism. Therefore, we determined whether there is an age-related change in proteasome activity and protein oxidation in heart, lung, liver, kidney and skeletal muscle samples of 6-, 10-, 18- and 26-month-old rats.
View Article and Find Full Text PDFThe Ca(2+)-ATPase of the sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle was oxidized by Fe2+/H2O2/ascorbic acid (AA), a system which generates HO(.) radicals according to the Fenton reaction: (Fe2(+)+H2O2-->HO(.)+OH(-)+Fe(3+)) under conditions similar to the pathological state of inflammation.
View Article and Find Full Text PDFOxidized proteins are recognized and degraded preferentially by the proteasome. This is true for numerous proteins including calmodulin (CaM). The degradation of CaM was investigated in a human fibroblast cell line under conditions of oxidative stress.
View Article and Find Full Text PDFEnvironmental factors, including sunlight, are able to induce severe oxidative protein damage. The modified proteins are either repaired, degraded or escape from degradation and aggregate. In the present study we tested the effect of different sunlight components such as UV-A, UV-B, and infrared radiation on protein oxidation in vitro.
View Article and Find Full Text PDFBrain ischemia and the following reperfusion are important causes for brain damage and leading causes of brain morbidity and human mortality. Numerous observations exist describing the neuronal damage during ischemia/reperfusion, but the outcome of such conditions towards glial cells still remains to be elucidated. Microglia are resident macrophages in the brain.
View Article and Find Full Text PDFThe effect of tyrosine nitration on mammalian GS activity and stability was studied in vitro. Peroxynitrite at a concentration of 5 micro mol/l produced tyrosine nitration and inactivation of GS, whereas 50 micro mol/l peroxynitrite additionally increased S-nitrosylation and carbonylation and degradation of GS by the 20S proteasome. (-)Epicatechin completely prevented both, tyrosine nitration and inactivation of GS by peroxynitrite (5 micro mol/l).
View Article and Find Full Text PDFAging is a complex progressive physiological alteration of the organism which ultimately leads to death. During the whole life a human being is confronted with oxidative stress. To measure how this oxidative stress is developing during the aging process and how it changes the cellular metabolism several substances have been pronounced as biomarkers including lipid peroxidation (LPO) products, protein oxidation products, antioxidative acting enzymes, minerals, vitamins, glutathione, flavonoids, bilirubin and uric acid (UA).
View Article and Find Full Text PDFThe accumulation of oxidatively damaged proteins is a well-known hallmark of aging and several neurodegenerative diseases including Alzheimer's, Parkinson's and Huntigton's diseases. These highly oxidized protein aggregates are in general not degradable by the main intracellular proteolytic machinery, the proteasomal system. One possible strategy to reduce the accumulation of such oxidized protein aggregates is the prevention of the formation of oxidized protein derivatives or to reduce the protein oxidation to a degree that can be handled by the proteasome.
View Article and Find Full Text PDFProteins accumulate during aging and form insoluble protein aggregates. Microglia are responsible for their removal from the brain. During aging, changes within the microglia might play a crucial role in the malfunctioning of these cells.
View Article and Find Full Text PDFOxidative damage accumulation in macromolecules has been considered as a cause of cellular damage and pathology. Rarely, the oxidative stress parameters in healthy humans related to the individual age have been reported. The purpose of this study was to examine the redox status in plasma and erythrocytes of healthy individuals and determine correlations between these parameters and the aging process.
View Article and Find Full Text PDFGlycated protein products are formed upon binding of sugars to lysine and arginine residues and have been shown to accumulate during aging and in pathologies such as Alzheimer disease and diabetes. Often these glycated proteins are transformed into advanced glycation end products (AGEs) by a series of intramolecular rearrangements. In the study presented here we tested the ability of microglial cells to degrade BSA-AGE formed by glycation reactions of bovine serum albumin (BSA) with glucose and fructose.
View Article and Find Full Text PDFIn vivo measurements in 26 female patients with lipedema and cellulite parameters were carried out before and after therapy by means of complex physical decongestive therapy (CPDT) including manual lymph drainage and compression as main components and/or shock wave therapy (SWT). Oxidative stress parameters of blood serum and biomechanic skin properties/smoothening of dermis and hypodermis surface were evaluated. Oxidative stress in lipedema and cellulite was demonstrated by increased serum concentrations of malondialdehyde (MDA) and plasma protein carbonyls compared with healthy control persons.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2004
Different substances such as dimethyl sulfoxide, tetramethylene sulfoxide, 2-pyrollidone, and the naturally occurring compatible solute betaine enhance PCR amplification of GC-rich DNA templates with high melting temperatures. In particular, cyclic compatible solutes outperform traditional PCR enhancers. We therefore investigated the effects that cyclic naturally occurring ectoine-type compatible solutes and their synthetic derivatives have on melting temperature of double-stranded DNA (dsDNA) and on PCR amplification of different templates.
View Article and Find Full Text PDF