Publications by authors named "Peter Voelker"

While neural networks are highly effective at learning task-relevant representations from data, they typically do not learn representations with the kind of symbolic structure that is hypothesized to support high-level cognitive processes, nor do they naturally model such structures within problem domains that are continuous in space and time. To fill these gaps, this work exploits a method for defining vector representations that bind discrete (symbol-like) entities to points in continuous topological spaces in order to simulate and predict the behavior of a range of dynamical systems. These vector representations are spatial semantic pointers (SSPs), and we demonstrate that they can (1) be used to model dynamical systems involving multiple objects represented in a symbol-like manner and (2) be integrated with deep neural networks to predict the future of physical trajectories.

View Article and Find Full Text PDF

Background: Observational studies suggest that beta-blockers may reduce the risk of exacerbations and death in patients with moderate or severe chronic obstructive pulmonary disease (COPD), but these findings have not been confirmed in randomized trials.

Methods: In this prospective, randomized trial, we assigned patients between the ages of 40 and 85 years who had COPD to receive either a beta-blocker (extended-release metoprolol) or placebo. All the patients had a clinical history of COPD, along with moderate airflow limitation and an increased risk of exacerbations, as evidenced by a history of exacerbations during the previous year or the prescribed use of supplemental oxygen.

View Article and Find Full Text PDF

Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem.

View Article and Find Full Text PDF