Publications by authors named "Peter Vikesland"

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria.

View Article and Find Full Text PDF

The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments).

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has gained significant attention for its ability to detect environmental contaminants with high sensitivity and specificity. The cost-effectiveness and potential portability of the technique further enhance its appeal for widespread application. However, challenges such as the management of voluminous quantities of high-dimensional data, its capacity to detect low-concentration targets in the presence of environmental interferents, and the navigation of the complex relationships arising from overlapping spectral peaks have emerged.

View Article and Find Full Text PDF

While numerous environmental factors contribute to the spread of antibiotic resistance genes (ARGs), quantifying their relative contributions remains a fundamental challenge. Similarly, it is important to differentiate acute human health risks from environmental exposure, versus broader ecological risk of ARG evolution and spread across microbial taxa. Recent studies have proposed various methods for achieving such aims.

View Article and Find Full Text PDF

Electrokinetic surface-enhanced Raman spectroscopy (EK-SERS) is an emerging high-order analytical technique that combines the plasmonic sensitivity of SERS with the electrode interfacial molecular control of electrokinetics. However, previous EK-SERS works primarily focused on non-Faradaic direct current (DC) operation, limiting the understanding of the underlying mechanisms. Additionally, developing reliable EK-SERS devices with electrically connected plasmonic hotspots remains challenging for achieving high sensitivity and reproducibility in EK-SERS measurements.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the behavior of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) and found significant variation in ARG responses, as they may either decrease or increase depending on the specific plant.
  • Researchers used metagenomic sequencing on samples from 12 international WWTPs, identifying 1079 different ARGs, with overall decreases in ARG abundance observed at most sites, except for one where 40% of ARGs increased.
  • The findings suggest that while WWTPs generally reduce antibiotic resistance loads, the increase in mobile genetic elements during treatment does not necessarily correlate with more transmissible ARGs, indicating a need for better wastewater surveillance strategies.
View Article and Find Full Text PDF

Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) has gained attention as a strategy to monitor and provide an early warning for disease outbreaks. Here, we applied an isothermal gene amplification technique, reverse-transcription loop-mediated isothermal amplification (RT-LAMP), coupled with nanopore sequencing (LAMPore) as a means to detect SARS-CoV-2. Specifically, we combined barcoding using both an RT-LAMP primer and the nanopore rapid barcoding kit to achieve highly multiplexed detection of SARS-CoV-2 in wastewater.

View Article and Find Full Text PDF

This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level.

View Article and Find Full Text PDF

The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri‑urban areas.

View Article and Find Full Text PDF

Surveillance of airborne viruses in crowded indoor spaces is crucial for managing outbreaks, as highlighted by the SARS-CoV-2 pandemic. However, the rapid and on-site detection of fast-mutating viruses, such as SARS-CoV-2, in complex environmental backgrounds remains challenging. Our study introduces a machine learning (ML)-driven surface-enhanced Raman spectroscopy (SERS) approach for detecting viruses within environmental dust matrices.

View Article and Find Full Text PDF

Hydrogel-based three-dimensional (3D) cell culture systems mimic the salient elements of extracellular matrices and promote native cell function. However, high-resolution 3D cell imaging that can provide biological information about multiple features of individual cells is yet to be realized. In this context, we incorporated plasmonic gold nanoparticles (AuNPs) into an alginate/gelatin hydrogel to produce surface-enhanced Raman spectroscopy (SERS)-active hydrogel inks for the 3D printing and culturing of Vero cells.

View Article and Find Full Text PDF

There is growing interest in better understanding the environmental impacts of landfills and optimizing their operation. Accordingly, we developed a holistic framework to calculate a landfill's Ecological Footprint (EF) and applied that to the Fargo, North Dakota, landfill. Parallelly, the carbon footprint and biocapacity of the landfill were calculated.

View Article and Find Full Text PDF

Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies.

View Article and Find Full Text PDF

Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens.

View Article and Find Full Text PDF

A prompt on-site, real-time method to detect bacterial antibiotic resistance is crucial for controlling the spread of resistance. Herein, we report the use of surface-enhanced Raman spectroscopy (SERS) for the monitoring of bioactive metabolites produced by ampicillin-resistant strains and identification of mechanisms underlying antibiotic resistance. The results indicate that the blue-green pigment pyocyanin (PYO) dominates the metabolite signals and is significantly enhanced upon exposure to subminimal inhibitory concentrations of ampicillin.

View Article and Find Full Text PDF

Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members.

View Article and Find Full Text PDF

There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km of the Chesapeake Bay region.

View Article and Find Full Text PDF

Unlabelled: Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members.

View Article and Find Full Text PDF

Efficient spread of respiratory viruses requires the virus to maintain infectivity in the environment. Environmental stability of viruses can be influenced by many factors, including temperature and humidity. Our study measured the impact of initial droplet volume (50, 5, and 1 μL) and relative humidity (RH; 40%, 65%, and 85%) on the stability of influenza A virus, bacteriophage Phi6 (a common surrogate for enveloped viruses), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under a limited set of conditions.

View Article and Find Full Text PDF