Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton and/or ion acceleration in the intensity range of 5×10(19) to 3.3×10(20) W/cm2 by irradiating linearly polarized, 30-fs laser pulses on 10-to 100-nm-thick polymer targets.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2008
The spatial dependence of proton acceleration at the rear surface of a target that is irradiated by high-contrast and ultraintense laser pulses is investigated. Lateral movement of the proton acceleration position at the rear surface is observed; this is tested by a two-pinhole measurement which results in the observation of protons with a narrow energy band. This drifting is only observed when relativistic-intensity laser pulses irradiate targets with a small preplasma at oblique incidence, as is confirmed by two-dimensional particle-in-cell simulations.
View Article and Find Full Text PDFInvestigations of plasma produced by a boron nitride capillary discharge irradiated with a guided 20-TW Ti: sapphire laser pulse at a peak intensity of 4 x 10(18) W/cm2 are presented. The guided laser radiation in the plasma channel generated He-like ions that, subject to suitable plasma temperature, recombined into Li-like nitrogen ions. Intense radiation at a wavelength of 24.
View Article and Find Full Text PDF