Presynaptic NMDA receptors facilitate the release of glutamate at excitatory cortical synapses and are involved in regulation of synaptic dynamics and plasticity. At synapses in the entorhinal cortex these receptors are tonically activated and provide a positive feedback modulation of the level of background excitation. NMDA receptor activation requires obligatory occupation of a co-agonist binding site, and in the present investigation we have examined whether this site on the presynaptic receptor is activated by endogenous glycine or d-serine.
View Article and Find Full Text PDFThe entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5).
View Article and Find Full Text PDFEthosuximide is the drug of choice for treating generalized absence seizures, but its mechanism of action is still a matter of debate. It has long been thought to act by disrupting a thalamic focus via blockade of T-type channels and, thus, generation of spike-wave activity in thalamocortical pathways. However, there is now good evidence that generalized absence seizures may be initiated at a cortical focus and that ethosuximide may target this focus.
View Article and Find Full Text PDFWe applied the group-I metabotropic glutamate (mGlu) receptor agonist, 3,5-dihydroxyphenylglycine (DHPG), to neonatal or adult rat hippocampal slices at concentrations (10 microM) that induced a short-term depression (STD) of excitatory synaptic transmission at the Schaffer collateral/CA1 synapses. DHPG-induced STD was entirely mediated by the activation of mGlu5 receptors because it was abrogated by the mGlu5 receptor antagonist, MPEP [2-methyl-6-(phenylethynyl)pyridine], but not by the mGlu1 receptor antagonist, CPCCOEt [7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester]. Knowing that ephrin-Bs functionally interact with group-I mGlu receptors (Calò et al.
View Article and Find Full Text PDFThe perirhinal cortex of the temporal lobe is essential for the familiarity discrimination component of recognition memory. In view of the importance of changes in calcium ion concentration for synaptic plasticity, the present study examined the effects of L-type voltage-dependent calcium channel (VDCC) antagonism on rat perirhinal-based familiarity discrimination processes and plasticity including long-term depression (LTD), long-term potentiation (LTP), and depotentiation. Single doses of three different types of L-type VDCC antagonists, verapamil, diltiazem, and nifedipine, administered systemically, or verapamil administered locally into the perirhinal cortex, impaired acquisition of long-term (24 h) but not shorter-term (20 min) recognition memory.
View Article and Find Full Text PDFRecent, convergent evidence places the anterior thalamic nuclei at the heart of diencephalic amnesia. However, the reasons for the severe memory loss in diencephalic amnesia remain unknown. A potential clue comes from the dense, reciprocal connections between the anterior thalamic nuclei and retrosplenial cortex, another region vital for memory.
View Article and Find Full Text PDFLearning is widely believed to involve synaptic plasticity, using mechanisms such as those used in long-term potentiation (LTP). We assess whether the mechanisms used in alternative forms of plasticity, long-term depression (LTD) and depotentiation, play a role in learning. We have exploited the involvement of the perirhinal cortex in two different forms of learning to compare simultaneously, within the same brain region, their effects on LTD and depotentiation.
View Article and Find Full Text PDFTrends Neurosci
April 2007
Long-term potentiation (LTP) and long-term depression (LTD) remain widely accepted vertebrate models for the cellular and molecular mechanisms that underlie synaptic changes during learning and memory. Although LTD is a phenomenon that occurs in many regions of the CNS, it is clear that the mechanisms recruited in its induction and expression can vary, depending on many factors, including brain region and developmental time point. LTD in the hippocampus and cerebellum is probably the best characterized, although there are also other brain areas where mechanisms of LTD are well understood, and where it is thought to have a functional role.
View Article and Find Full Text PDFThe role of NMDA receptors in the induction of long-term potentiation (LTP) and long-term depression (LTD) is well established but which particular NR2 subunits are involved in these plasticity processes is still a matter of controversy. We have studied the effects of subtype selective NMDA receptor antagonists on LTP induced by high frequency stimulation (100 Hz for 1s) and LTD induced by low frequency stimulation (1 Hz for 15 min) in the CA1 region of hippocampal slices from 14 day old Wistar rats. Against recombinant receptors in HEK293 cells NVP-AAM077 (NVP) was approximately 14-fold selective for NR2A vs NR2B receptors, whilst Ro 25-6981 (Ro) was highly selective for NR2B receptors.
View Article and Find Full Text PDFMechanisms of long-term potentiation and depression (LTP and LTD) change considerably during development, but the importance of these changes and the factors that control them is not clear. We found that visual experience triggered a switch in mechanisms of LTD in rat perirhinal cortex, an area critical for visual recognition memory. Thus, changes in synaptic plasticity mechanisms were correlated with the changing physiological demands on the CNS.
View Article and Find Full Text PDFWe established the importance of phosphorylation of cAMP responsive element-binding protein (CREB) to both the familiarity discrimination component of long-term recognition memory and plasticity within the perirhinal cortex of the temporal lobe. Adenoviral transduction of perirhinal cortex (and adjacent visual association cortex) with a dominant-negative inhibitor of CREB impaired the preferential exploration of novel over familiar objects at a long (24 h) but not a short (15 min) delay, disrupted the normal reduced activation of perirhinal neurons to familiar compared with novel pictures, and impaired long-term potentiation of synaptic transmission in perirhinal slices. The consistency of these effects across the behavioral, systems, and cellular levels of analysis provides strong evidence for involvement of CREB phosphorylation in synaptic plastic processes within perirhinal cortex necessary for long-term recognition memory.
View Article and Find Full Text PDFIt is widely believed that long-term depression (LTD) and its counterpart, long-term potentiation (LTP), involve mechanisms that are crucial for learning and memory. However, LTD is difficult to induce in adult cortex for reasons that are not known. Here we show that LTD can be readily induced in adult cortex by the activation of NMDA receptors (NMDARs), after inhibition of glutamate uptake.
View Article and Find Full Text PDFWe establish the importance of cholinergic neurotransmission to both recognition memory and plasticity within the perirhinal cortex of the temporal lobe. The muscarinic receptor antagonist scopolamine impaired the preferential exploration of novel over familiar objects, disrupted the normal reduced activation of perirhinal neurones to familiar compared to novel pictures, and blocked production of long-term depression (LTD) but not long-term potentiation (LTP) of synaptic transmission in perirhinal slices. The consistency of these effects across the behavioral, systems, and cellular levels of analysis provides strong evidence for the involvement of cholinergic mechanisms in synaptic plastic processes within perirhinal cortex that are necessary for recognition memory.
View Article and Find Full Text PDF