Cellulose nanofibrils (CNFs) are abundant materials limited in application by their hydrophilic nature and fibrillar collapse during drying. Herein, hydrophobic CNFs (PS-MetCNFs) were produced via the grafting of polystyrene through a methacrylate handle on modified CNFs. This modification prevented fibrillar collapse of the CNFs upon drying with as low as 3.
View Article and Find Full Text PDFUsing lignocellulosic nanofibrils as adhesive binders in structural composites is a growing field of interest attributable to their renewability, recyclability, and strength. A fundamental understanding of their adhesion mechanisms is crucial to tailor performance and optimize production costs. These mechanisms were elucidated by studying the morphology dependent adhesion in a model system composed of cellulose nanofibrils (CNFs) at different degrees of refinement and porous paper substrates.
View Article and Find Full Text PDFModifying the surface of cellulose nanofibrils (CNFs) produced by mechanical refinement with a variety of polymer functional groups in an entirely water-based system is challenging because only surface hydroxyl groups are accessible. To address this limitation, an entirely water-based, polymer modification scheme is developed. CNFs are functionalized with a reactive methacrylate functional group followed by subsequent grafting-through polymerization.
View Article and Find Full Text PDF