Anthropogenic stressors are exacerbating the emergence and spread of pathogens worldwide. In regions like the Arctic, where ecosystems are particularly susceptible, marked changes are predicted in regional diversity, intensity, and patterns of infectious diseases. To understand such rapidly changing host-pathogen dynamics and mitigate the impacts of novel pathogens, we need sensitive disease surveillance tools.
View Article and Find Full Text PDFGenetic monitoring using noninvasive samples provides a complement or alternative to traditional population monitoring methods. However, next-generation sequencing approaches to monitoring typically require high quality DNA and the use of noninvasive samples (e.g.
View Article and Find Full Text PDFPredicting the consequences of environmental changes, including human-mediated climate change on species, requires that we quantify range-wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations ( = 358) using 13,488 genome-wide single nucleotide polymorphisms (SNPs) identified with double-digest restriction site-associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation.
View Article and Find Full Text PDF