To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds.
View Article and Find Full Text PDFPhenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay.
View Article and Find Full Text PDFMetacaspases are ancestral homologs of caspases that can either promote cell death or confer cytoprotection. Furthermore, yeast (Saccharomyces cerevisiae) metacaspase Mca1 possesses dual biochemical activity: proteolytic activity causing cell death and cytoprotective, co-chaperone-like activity retarding replicative aging. The molecular mechanism favoring one activity of Mca1 over another remains elusive.
View Article and Find Full Text PDFPhenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis.
View Article and Find Full Text PDFAutophagy is a catabolic pathway capable of degrading cellular components ranging from individual molecules to organelles. Autophagy helps cells cope with stress by removing superfluous or hazardous material. In a previous work, we demonstrated that transcriptional upregulation of two autophagy-related genes, and , in positively affected agronomically important traits: biomass, seed yield, tolerance to pathogens and oxidative stress.
View Article and Find Full Text PDFMetacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors.
View Article and Find Full Text PDFJ Exp Bot
December 2021
Proteases can regulate myriad biochemical pathways by digesting or processing target proteins. While up to 3% of eukaryotic genes encode proteases, only a tiny fraction of proteases are mechanistically understood. Furthermore, most of the current knowledge about proteases is derived from studies of a few model organisms, including Arabidopsis thaliana in the case of plants.
View Article and Find Full Text PDFTudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins.
View Article and Find Full Text PDFBackground: Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants.
View Article and Find Full Text PDFInt J Mol Sci
March 2021
possesses two acyl-CoA:lysophosphatidylethanolamine acyltransferases, LPEAT1 and LPEAT2, which are encoded by and genes, respectively. Both single mutant and double mutant plants exhibit a variety of conspicuous phenotypes, including dwarfed growth. Confocal microscopic analysis of tobacco suspension-cultured cells transiently transformed with green fluorescent protein-tagged versions of LPEAT1 or LPEAT2 revealed that LPEAT1 is localized to the endoplasmic reticulum (ER), whereas LPEAT2 is localized to both Golgi and late endosomes.
View Article and Find Full Text PDFMicrospore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process.
View Article and Find Full Text PDFMetacaspases and paracaspases are proteases that were first identified as containing a caspase-like structural fold (Uren et al., 2000). Like caspases, meta- and paracaspases are multifunctional proteins regulating diverse biological phenomena, such as aging, immunity, proteostasis and programmed cell death.
View Article and Find Full Text PDFAutophagy is a major catabolic process in eukaryotes with a key role in homeostasis, programmed cell death, and aging. In plants, autophagy is also known to regulate agronomically important traits such as stress resistance, longevity, vegetative biomass, and seed yield. Despite its significance, there is still a shortage of reliable tools modulating plant autophagy.
View Article and Find Full Text PDFAutophagy and the ubiquitin-proteasome system (UPS) are two major protein degradation pathways implicated in the response to microbial infections in eukaryotes. In animals, the contribution of autophagy and the UPS to antibacterial immunity is well documented and several bacteria have evolved measures to target and exploit these systems to the benefit of infection. In plants, the UPS has been established as a hub for immune responses and is targeted by bacteria to enhance virulence.
View Article and Find Full Text PDFThe terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis.
View Article and Find Full Text PDFAutophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway.
View Article and Find Full Text PDFAutophagy is a major catabolic process whereby autophagosomes deliver cytoplasmic content to the lytic compartment for recycling. Autophagosome formation requires two ubiquitin-like systems conjugating Atg12 with Atg5, and Atg8 with lipid phosphatidylethanolamine (PE), respectively. Genetic suppression of these systems causes autophagy-deficient phenotypes with reduced fitness and longevity.
View Article and Find Full Text PDFLipids and their cellular utilization are essential for life. Not only are lipids energy storage molecules, but their diverse structural and physical properties underlie various aspects of eukaryotic biology, such as membrane structure, signalling, and trafficking. In the ever-changing environment of cells, lipids, like other cellular components, are regularly recycled to uphold the housekeeping processes required for cell survival and organism longevity.
View Article and Find Full Text PDF