Recent interest in potassium-doped -terphenyl has been fueled by reports of superconductivity at values surprisingly high for organic compounds. Despite these interesting properties, studies of the structure-function relationships within these materials have been scarce. Here, we isolate a phase-pure crystal of potassium-doped -terphenyl: [K()][-terphenyl].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
The exotic properties of quantum spin liquids (QSLs) have continually been of interest since Anderson's 1973 ground-breaking idea. Geometrical frustration, quantum fluctuations, and low dimensionality are the most often evoked material's characteristics that favor the long-range fluctuating spin state without freezing into an ordered magnet or a spin glass at low temperatures. Among the few known QSL candidates, organic crystals have the advantage of having rich chemistry capable of finely tuning their microscopic parameters.
View Article and Find Full Text PDFMost digital information today is encoded in the magnetization of ferromagnetic domains. The demand for ever-increasing storage space fuels continuous research for energy-efficient manipulation of magnetism at smaller and smaller length scales. Writing a bit is usually achieved by rotating the magnetization of domains of the magnetic medium, which relies on effective magnetic fields.
View Article and Find Full Text PDFAn efficient route to synthesize macroscopic amounts of graphene is highly desired and bulk characterization of such samples, in terms of the number of layers, is equally important. We present a Raman spectroscopy-based method to determine the typical upper limit of the number of graphene layers in chemically exfoliated graphene. We utilize a controlled vapour-phase potassium intercalation technique and identify a lightly doped stage, where the Raman modes of undoped and doped few-layer graphene flakes coexist.
View Article and Find Full Text PDF