Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay.
View Article and Find Full Text PDFPolycystic ovarian syndrome (PCOS) is associated with hyperandrogenemia and ovarian antral follicle growth arrest. We have previously demonstrated that androgen-induced exosomal release of miR-379-5p (miR379) from preantral follicle granulosa cells increases the proliferation of target cells phosphoinositide-dependent kinase 1 (PDK1) upregulation. Androgen also increases inflammatory M1 macrophage abundance, but reduces anti-inflammatory M2 polarization in rat antral and preovulatory follicles.
View Article and Find Full Text PDFResearch Question: Can the adipocytokine milieu of the follicular niche improve the ability to predict treatment outcomes in infertile patients?
Design: Follicular fluid samples from overweight patients were analysed and compared with samples from matched normal-weight patients. Concentrations of adiponectin, chemerin, C-reactive protein, interleukin-6 (IL-6), IL-10, IL-18, insulin, leptin, prolactin, resistin, tumour necrosis factor alpha (TNF-α) and bone morphogenetic protein-15 (BMP-15) were assessed by multiple magnetic bead immunoassay (MMBI) and enzyme-linked immunosorbent assay and correlated with fertility treatment outcomes.
Results: Analysis of samples from 22 overweight and 22 normal-weight patients demonstrated that TNF-α can predict oocyte maturation rate.
Study Question: Do phytocannabinoids (PCs) affect follicular endocannabinoid signalling and the epigenome in the surrounding granulosa cells (GCs)?
Summary Answer: Exposure to PCs increases the expression of endocannabinoid receptors and reduces DNA methylation enzyme expression and global DNA methylation in naïve GCs.
What Is Known Already: Cannabis plant derivatives, known as PCs, are used for medicinal and recreational purposes. The main PC, tetrahydrocannabinol (THC), is the third most commonly used substance by women of childbearing age, hence knowledge of the effect it has on reproduction is of utmost importance.
Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention.
View Article and Find Full Text PDFBackground: Perivascular cells (PVC) and their "progeny," mesenchymal stromal cells (MSC), have high therapeutic potential for ischemic diseases. While hypoxia can increase their angiogenic properties, the other aspect of ischemic conditions-glucose shortage-is deleterious for MSC and limits their therapeutic applicability. Regenerative cells in developing vascular tissues, however, can adapt to varying glucose environment and react in a tissue-protective manner.
View Article and Find Full Text PDFHigh quality cell cultures require reliable laboratory practices. Today's small-scale cell culture format is dominated by circular topology vessels, with the inherent disadvantage of secondary flow induced each time the cell cultures are repositioned. The secondary flow generates uneven sedimentation and adherence that negatively impacts cell culture quality.
View Article and Find Full Text PDFThe structural components of the umbilical cord, including two arteries and one vein, the stromal region/Wharton's jelly, and amniotic epithelial membrane, are well described at various time points of gestation. Over the last two decades, evidence has emerged that multipotent cells sharing properties of mesenchymal stromal cell and pericytes/mural cells can be isolated from multiple regions of the umbilical cord, including the perivascular region of the umbilical cord arteries and vein, Wharton's jelly, and subamnion. These cells have increasingly gained interest for their potential use in regenerative and immunomodulatory medicine.
View Article and Find Full Text PDFAngiogenesis is a complex, highly regulated process responsible for providing and maintaining adequate tissue perfusion. Insufficient vasculature maintenance and pathological malformations can result in severe ischemic diseases, while overly abundant vascular development is associated with cancer and inflammatory disorders. A promising form of pro-angiogenic therapy is the use of angiogenic cell sources, which can provide regulatory factors as well as physical support for newly developing vasculature.
View Article and Find Full Text PDFMyocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved.
View Article and Find Full Text PDFBackground: Due to limitations of current angiogenesis assays, we aimed to develop a novel application of the rat aortic ring assay to assess the angiogenic potential of mesenchymal stromal cells (MSCs). First-trimester human umbilical cord-derived perivascular cells (FTM HUCPVCs) have multipotent characteristics and previously demonstrated angiogenic potential. We compared the effect of this young source of MSCs and adult bone marrow stromal cells (BMSCs) on ex vivo aortic endothelial network formation.
View Article and Find Full Text PDFMyocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found.
View Article and Find Full Text PDFPolyunsaturated fatty acids are susceptible to peroxidation and they yield various degradation products, including the main α,β-unsaturated hydroxyalkenal, 4-hydroxy-2,3-trans-nonenal (HNE) in oxidative stress. Due to its high reactivity, HNE interacts with various macromolecules of the cell, and this general toxicity clearly contributes to a wide variety of pathological conditions. In addition, growing evidence suggests a more specific function of HNE in electrophilic signaling as a second messenger of oxidative/electrophilic stress.
View Article and Find Full Text PDFCellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression.
View Article and Find Full Text PDFThe involvement of presenilins in the endoplasmic reticulum (ER) related autophagy was investigated by their transient knockdown in HepG2 cells. The silencing of PSEN1 but not of PSEN2 led to cell growth impairment and decreased viability. PSEN1 silencing resulted in ER stress response as evidenced by the elevated levels of glucose regulated protein 78 (Grp78), protein disulfide isomerase (PDI), and CCAAT/enhancer-binding protein homologous protein (CHOP) and by the activation of activating transcription factor 6 (ATF6).
View Article and Find Full Text PDFHuman umbilical cord-derived perivascular cells (PVCs) are a recently characterized source of mesenchymal stromal cells that has gained much interest in the field of cellular therapeutics. However, very little is known about the changes in fate potential and restrictions that these cells undergo during gestational development. This study is the first to examine the phenotypic, molecular, and functional properties of first trimester (FTM)-derived PVCs, outlining properties that are unique to this population when compared to term (TERM) counterparts.
View Article and Find Full Text PDF(-)-Epigallocatechin-3-gallate (EGCG) has been found to trigger the unfolded protein response (UPR) likely due to the inhibition of glucosidase II, a key enzyme of glycoprotein processing and quality control in the endoplasmic reticulum (ER). These findings strongly suggest that EGCG interferes with glycoprotein maturation and sorting in the ER. This hypothesis was tested in SK-Mel28 human melanoma cells by assessing the effect of EGCG and deoxynojirimycin (DNJ) on the synthesis of two endogenous glycoproteins.
View Article and Find Full Text PDFMaintenance of the reduced state of luminal pyridine nucleotides in the endoplasmic reticulum - an important pro-survival factor in the cell - is ensured by the concerted action of glucose-6-phosphate transporter and hexose-6-phosphate dehydrogenase. The mechanism by which the redox imbalance leads to cell death was investigated in HepG2 cells. The chemical inhibition of the glucose-6-phosphate transporter, the silencing of hexose-6-phosphate dehydrogenase and/or the glucose-6-phosphate transporter, or the oxidation of luminal NADPH by themselves did not cause a significant loss of cell viability.
View Article and Find Full Text PDFAlpha1-antitrypsin (AAT) deficiency is characterized by the accumulation of the misfolded mutant, Z form of alpha1-antitrypsin (PiZ) inside the lumen of the hepatic endoplasmic reticulum (ER). Both human patients and PiZ transgenic mice have similar symptoms of hepatic failure culminating in cirrhosis and hepatocellular carcinoma. The involvement of molecular chaperones, as well as the relevance of oxidative stress in this disease is not characterized well yet.
View Article and Find Full Text PDF