Publications by authors named "Peter Szakacs"

A highly accurate coupled-cluster-based ab initio model chemistry has been applied to calculate the thermodynamic functions including enthalpies of formation and standard entropies for fluorinated ethane derivatives, C2HxF6-x (x = 0-5), as well as ethane, C2H6. The invoked composite protocol includes contributions up to quadruple excitations in coupled-cluster (CC) theory as well as corrections beyond the nonrelativistic and Born-Oppenheimer approximations. For species CH2F-CH2F, CH2F-CHF2, and CHF2-CHF2, where anti/gauche isomerism occurs due to the hindered rotation around the C-C bond, conformationally averaged enthalpies and entropies at 298.

View Article and Find Full Text PDF

In this study, several sulfur-containing molecules with atmospherical importance were investigated by means of high-accuracy quantum chemical calculations including: HSO, HOS, HOSO2, HSNO, SH, CH2SO, CH2SH, S2COH, and SCSOH. After identifying the stable conformers of the molecules, a coupled-cluster-based composite model chemistry, which includes contributions up to quadruple excitations as well as corrections beyond the nonrelativistic and Born–Oppenheimer approximations, was applied to calculate the corresponding heat of formation (Δ(f)H(0)° and Δ(f)H(298)°) and entropy (S(298)°) values. In most of the cases, this study delivers more reliable estimates for the investigated thermodynamic properties than those reported in previous investigations.

View Article and Find Full Text PDF

High-accuracy quantum chemical calculations were performed for several atmospherically important nitrogen oxide derivatives, such as HOONO, HOONO(2), NH(2)NO(2), FNO, FNO(2), FONO, FONO(2), ClNO, ClONO, ClONO(2), and ClOONO. The stable conformers of the molecules were identified, and the corresponding heats of formation (Δ(f)H(0)° and Δ(f)H(298)°) and entropy values (S(298)°) were computed. On the basis of the thermodynamic functions, equilibrium constants were also calculated for a couple of reactions with importance in the chemistry of the atmosphere.

View Article and Find Full Text PDF

Due to their rotational (C(n)) symmetry, neutral zigzag and armchair type nanotubes possess doubly degenerate orbitals. As the energies of highest occupied molecular orbital and lowest unoccupied molecular orbital are usually different, neutral nanotubes exhibit a nondegenerate ground state. Ionized or excited forms of these tubes, however, may undergo Jahn-Teller distortion if degenerate orbitals show up in the vicinity of the Fermi level.

View Article and Find Full Text PDF