Publications by authors named "Peter Svihra"

High-dimensional entanglement is a promising resource for quantum technologies. Being able to certify it for any quantum state is essential. However, to date, experimental entanglement certification methods are imperfect and leave some loopholes open.

View Article and Find Full Text PDF

Radon detectors based on an electrostatic collection of polonium and detection of its alpha decay are a popular choice for the measurement of radon activity. Due to the nature of $^{222}$Rn decays, 88% of radon progeny have a positive charge, thus enabling their collection on an electrode. A simulation software focused on the drift and diffusion of ions in an electric field has been developed, providing a tool to study and characterise such detectors.

View Article and Find Full Text PDF

A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available.

View Article and Find Full Text PDF

O PLIM microscopy was employed in various studies, however current platforms have limitations in sensitivity, image acquisition speed, accuracy and general usability. We describe a new PLIM imager based on the Timepix3 camera (Tpx3cam) and its application for imaging of O concentration in various tissue samples stained with a nanoparticle based probe, NanO2-IR. Upon passive staining of mouse brain, lung or intestinal tissue surface with minute quantities of NanO2-IR or by microinjecting the probe into the lumen of small or large intestine fragments, robust phosphorescence intensity and lifetime signals were produced, which allow mapping of O in the tissue within 20 s.

View Article and Find Full Text PDF

The uses of a silicon-pixel camera with very good time resolution (∼nanosecond) for detecting multiple, bunched optical photons is explored. We present characteristics of the camera and describe experiments proving its counting capabilities. We use a spontaneous parametric down-conversion source to generate correlated photon pairs, and exploit the Hong-Ou-Mandel (HOM) interference effect in a fiber-coupled beam splitter to bunch the pair onto the same output fiber.

View Article and Find Full Text PDF

Scalable technologies to characterize the performance of quantum devices are crucial to creating large quantum networks and quantum processing units. Chief among the resources of quantum information processing is entanglement. Here we describe the full temporal and spatial characterization of polarization-entangled photons produced by Spontaneous Parametric Down Conversions using an intensified high-speed optical camera, Tpx3Cam.

View Article and Find Full Text PDF

A camera-based three-dimensional (3D) imaging system with a superb time-of-flight (TOF) resolution and multi-hit capability was recently developed for electron/ion imaging [Lee et al. J. Chem.

View Article and Find Full Text PDF

The properties of a novel ultra-fast optical imager, Tpx3Cam, were investigated for macroscopic wide-field phosphorescent lifetime imaging (PLIM) applications. The camera is based on a novel optical sensor and Timepix3 readout chip with a time resolution of 1.6 ns, recording of photon arrival time and time over threshold for each pixel, and readout rate of 80 megapixels per second.

View Article and Find Full Text PDF

We demonstrate a coincidence velocity map imaging apparatus equipped with a novel time-stamping fast optical camera, Tpx3Cam, whose high sensitivity and nanosecond timing resolution allow for simultaneous position and time-of-flight detection. This single detector design is simple, flexible, and capable of highly differential measurements. We show detailed characterization of the camera and its application in strong field ionization experiments.

View Article and Find Full Text PDF