Publications by authors named "Peter Sussner"

Morphological neural networks (MNNs) can be characterized as a class of artificial neural networks that perform an operation of mathematical morphology at every node, possibly followed by the application of an activation function. Morphological perceptrons (MPs) and (gray-scale) morphological associative memories are among the most widely known MNN models. Since their neuronal aggregation functions are not differentiable, classical methods of non-linear optimization can in principle not be directly applied in order to train these networks.

View Article and Find Full Text PDF

We recently employed concepts of mathematical morphology to introduce fuzzy morphological associative memories (FMAMs), a broad class of fuzzy associative memories (FAMs). We observed that many well-known FAM models can be classified as belonging to the class of FMAMs. Moreover, we developed a general learning strategy for FMAMs using the concept of adjunction of mathematical morphology.

View Article and Find Full Text PDF

Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMMs) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In this paper, we make extensive use of minimax algebra to analyze gray-scale autoassociative morphological memories.

View Article and Find Full Text PDF

Morphological associative memories (MAMs) belong to the class of morphological neural networks. The recording scheme used in the original MAM models is similar to the correlation recording recipe. Recording is achieved by means of a maximum (MXY model) or minimum (WXY model) of outer products.

View Article and Find Full Text PDF