Tailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.
View Article and Find Full Text PDFUltrashort deep ultraviolet (DUV) pulses serve as indispensable tools for investigating molecular dynamics on the femtosecond scale. Nonlinear frequency upconversion of near-infrared (NIR) light sources in a sequence of nonlinear crystals is a common method for their generation. However, preserving the temporal duration of the starting source encounters challenges owing to phase-matching bandwidth limitations within the harmonic generation process.
View Article and Find Full Text PDFTheoretical and experimental evaluation of the photodarkening effect as a heat source in ytterbium doped fibers is presented. An additional non-radiative decay channel that opens after photodarkening the fiber is identified via fluorescence lifetime reduction and as an additional heat source proportional to inversion. It is included in the heat source model which was tested on a core-pumped fiber amplifiers.
View Article and Find Full Text PDF