Publications by authors named "Peter Stilz"

Background: Habitat structure strongly influences niche differentiation, facilitates predator avoidance, and drives species-specific foraging strategies of bats. Vegetation structure is also a strong driver of echolocation call characteristics. The fine-scale assessment of how bats utilise such structures in their natural habitat is instrumental in understanding how habitat composition shapes flight- and acoustic behaviour.

View Article and Find Full Text PDF

Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.

View Article and Find Full Text PDF

Porpoise echolocation parameters may vary depending on their acoustic habitat and predominant behavior. Research was conducted in the Wadden Sea, an acoustically complex, tidally driven habitat with high particle resuspension. Source levels and echolocation parameters of wild harbor porpoises were estimated from time-of-arrival-differences of a six-element hydrophone array.

View Article and Find Full Text PDF

Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date.

View Article and Find Full Text PDF

We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted.

View Article and Find Full Text PDF

A key component in the operation of a biosonar system is the radiation of sound energy from the sound producing head structures of toothed whales and microbats. The current view involves a fixed transmission aperture by which the beam width can only change via changes in the frequency of radiated clicks. To test that for a porpoise, echolocation clicks were recorded with high angular resolution using a 16 hydrophone array.

View Article and Find Full Text PDF

Reduction of echolocation call source levels in bats has previously been studied using set-ups with one microphone. By using a 16 microphone array, sound pressure level (SPL) variations, possibly caused by the scanning movements of the bat, can be excluded and the sonar beam aiming can be studied. During the last two meters of approach flights to a landing platform in a large flight room, five big brown bats aimed sonar beams at the landing site and reduced the source level on average by 7 dB per halving of distance.

View Article and Find Full Text PDF

Echo-locating bats constantly emit ultrasonic pulses and analyze the returning echoes to detect, localize, and classify objects in their surroundings. Echo classification is essential for bats' everyday life; for instance, it enables bats to use acoustical landmarks for navigation and to recognize food sources from other objects. Most of the research of echo based object classification in echo-locating bats was done in the context of simple artificial objects.

View Article and Find Full Text PDF

Recordings of the echolocation signals of landing big brown bats with a two-dimensional 16-microphone array revealed that the source level reduction of 7 dB per halving of distance is superimposed by a variation of up to 12 dB within single call groups emitted during the approach. This variation correlates with the wingbeat cycle. The timing of call emission correlates with call group size.

View Article and Find Full Text PDF

A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks.

View Article and Find Full Text PDF

Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections.

View Article and Find Full Text PDF