The development of a sample environment for in situ x-ray characterization during metal Electron Beam Powder Bed Fusion (PBF-EB), called MiniMelt, is presented. The design considerations, the features of the equipment, and its implementation at the synchrotron facility PETRA III at Deutsches Elektronen-Synchrotron, Hamburg, Germany, are described. The equipment is based on the commercially available Freemelt ONE PBF-EB system but has been customized with a unique process chamber to enable real-time synchrotron measurements during the additive manufacturing process.
View Article and Find Full Text PDFThe high flux combined with the high energy of the monochromatic synchrotron radiation available at modern synchrotron facilities offers vast possibilities for fundamental research on metal processing technologies. Especially in the case of laser powder bed fusion (LPBF), an additive manufacturing technology for the manufacturing of complex-shaped metallic parts, in situ methods are necessary to understand the highly dynamic thermal, mechanical, and metallurgical processes involved in the creation of the parts. At PETRA III, Deutsches Elektronen-Synchrotron, a customized LPBF system featuring all essential functions of an industrial LPBF system, is used for in situ x-ray diffraction research.
View Article and Find Full Text PDFIntermetallic γ-TiAl-based alloys are lightweight materials for high-temperature applications, e.g., in the aerospace and automotive industries.
View Article and Find Full Text PDFDiffraction and imaging using x-rays and neutrons are widely utilized in different fields of engineering, biology, chemistry and/or materials science. The additional information gained from the diffraction signal by x-ray diffraction and computed tomography (XRD-CT) can give this method a distinct advantage in materials science applications compared to classical tomography. Its active development over the last decade revealed structural details in a non-destructive way with unprecedented sensitivity.
View Article and Find Full Text PDFIn Gram-negative bacteria, trans-envelope efflux pumps have periplasmic membrane fusion proteins (MFPs) as essential components. MFPs act as mediators between outer membrane factors (OMFs) and inner membrane factors (IMFs). In this study, structure-function relations of the ATP-driven glycolipid efflux pump DevBCA-TolC/HgdD from the cyanobacterium Anabaena sp.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2012
Efflux pumps export a wide variety of proteinaceous and non-proteinaceous substrates across the Gram-negative cell wall. For the filamentous cyanobacterium Anabaena sp. strain PCC 7120, the ATP-driven glycolipid efflux pump DevBCA-TolC has been shown to be crucial for the differentiation of N(2)-fixing heterocysts from photosynthetically active vegetative cells.
View Article and Find Full Text PDFUpon depletion of combined nitrogen, N(2)-fixing heterocysts are formed from vegetative cells in the case of the filamentous cyanobacterium Anabaena sp. strain PCC 7120. A heterocyst-specific layer composed of glycolipids (heterocyst envelope glycolipids (HGLs)) that functions as an O(2) diffusion barrier is deposited over the heterocyst outer membrane and is surrounded by an outermost heterocyst polysaccharide envelope.
View Article and Find Full Text PDF