Organs transplanted across donor-specific HLA antibodies (DSA) are associated with a variety of clinical outcomes, including a high risk of acute kidney graft rejection. Unfortunately, the currently available assays to determine DSA characteristics are insufficient to clearly discriminate between potentially harmless and harmful DSA. To further explore the hazard potential of DSA, their concentration and binding strength to their natural target, using soluble HLA, may be informative.
View Article and Find Full Text PDFMechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies.
View Article and Find Full Text PDFWearable health sensors are about to change our health system. While several technological improvements have been presented to enhance performance and energy-efficiency, battery runtime is still a critical concern for practical use of wearable biomedical sensor systems. The runtime limitation is directly related to the battery size, which is another concern regarding practicality and customer acceptance.
View Article and Find Full Text PDFNogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor.
View Article and Find Full Text PDFIn this article, we describe a new enzyme-linked immunosorbent assay (ELISA) setup to improve the sensitivity of commercial or homemade ELISAs. In the new ELISA setup, an IMAPlate 5RC96, a disposable multi-utility lab device developed by NCL New Concept Lab is used as a self-uptaking microcuvette array to read out the result of the ELISA that is performed in the normal 96-well plate with reduced substrate solution and stop solution. A commercial interleukin-6 (IL-6) ELISA reagent kit was used for the evaluation.
View Article and Find Full Text PDFTo explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times.
View Article and Find Full Text PDFA miniaturized enzyme-linked immunosorbent assay (ELISA) with a reaction volume of 5 microl for human transferrin quantification has successfully been developed using an intelligent multifunctional analytical plate (IMAPlate 5RC96), the first miniature analytical platform capable of manually performing parallel liquid transfer, reaction, and analysis. This is the first article to validate the platform for the ELISA application. The data obtained from the standards in this miniaturized ELISA can well be fitted by a one-site binding reaction mode, the coefficient of variation (CV) of the whole plate for an artificial sample (spiking a known concentration of human transferrin into the assay diluent) is 7.
View Article and Find Full Text PDF