Electrical impedance tomography (EIT) is an emerging technology for the non-invasive monitoring of regional distribution of ventilation and perfusion, offering real-time and continuous data that can greatly enhance our understanding and management of various respiratory conditions and lung perfusion. Its application may be especially beneficial for critically ill mechanically ventilated patients. Despite its potential, clear evidence of clinical benefits is still lacking, in part due to a lack of standardization and transparent reporting, which is essential for ensuring reproducible research and enhancing the use of EIT for personalized mechanical ventilation.
View Article and Find Full Text PDFBackground: Popularity of electrical impedance tomography (EIT) and esophageal pressure (Pes) monitoring in the ICU is increasing, but there is uncertainty regarding their bedside use within a personalized ventilation strategy. We aimed to gather insights about the current experiences and perceived role of these physiological monitoring techniques, and to identify barriers and facilitators/solutions for EIT and Pes implementation.
Methods: Qualitative study involving (1) a survey targeted at ICU clinicians with interest in advanced respiratory monitoring and (2) an expert focus group discussion.
. Geometrical region of interest (ROI) selection in electrical impedance tomography (EIT) monitoring may lack sensitivity to subtle changes in ventilation distribution. Therefore, we demonstrate a new physiological method for ROI definition.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) produces clinical useful visualization of the distribution of ventilation inside the lungs. The accuracy of EIT-derived parameters can be compromised by the cardiovascular signal. Removal of these artefacts is challenging due to spectral overlapping of the ventilatory and cardiovascular signal components and their time-varying frequencies.
View Article and Find Full Text PDFBackground: Prolonged weaning from mechanical ventilation is associated with poor clinical outcome. Therefore, choosing the right moment for weaning and extubation is essential. Electrical Impedance Tomography (EIT) is a promising innovative lung monitoring technique, but its role in supporting weaning decisions is yet uncertain.
View Article and Find Full Text PDFBackground: Mechanical power (MP) is the energy delivered by the ventilator to the respiratory system and combines factors related to the development of ventilator-induced lung injury (VILI). Flow-controlled ventilation (FCV) is a new ventilation mode using a constant low flow during both inspiration and expiration, which is hypothesized to lower the MP and to improve ventilation homogeneity. Data demonstrating these effects are scarce, since previous studies comparing FCV with conventional controlled ventilation modes in ICU patients suffer from important methodological concerns.
View Article and Find Full Text PDFCurr Opin Crit Care
February 2024
Purpose Of Review: To summarize the key concepts, physiological rationale and clinical evidence for titrating positive end-expiratory pressure (PEEP) using transpulmonary pressure ( PL ) derived from esophageal manometry, and describe considerations to facilitate bedside implementation.
Recent Findings: The goal of an esophageal pressure-based PEEP setting is to have sufficient PL at end-expiration to keep (part of) the lung open at the end of expiration. Although randomized studies (EPVent-1 and EPVent-2) have not yet proven a clinical benefit of this approach, a recent posthoc analysis of EPVent-2 revealed a potential benefit in patients with lower APACHE II score and when PEEP setting resulted in end-expiratory PL values close to 0 ± 2 cmH 2 O instead of higher or more negative values.
Rationale: It is unknown how to titrate positive end-expiratory pressure (PEEP) in patients with COVID-19-related acute respiratory distress syndrome (ARDS). Guidelines recommend the one-size-fits-all PEEP-FiO table. In this retrospective cohort study, an electrical impedance tomography (EIT)-guided PEEP trial was used to titrate PEEP.
View Article and Find Full Text PDFPurpose Of Review: To summarize the current knowledge about the application of advanced monitoring techniques in coronavirus disease 2019 (COVID-19).
Recent Findings: Due to the heterogeneity between patients, management of COVID-19 requires daily monitoring of and/or aeration and inspiratory effort. Electrical impedance tomography can be used to optimize positive end-expiratory pressure, monitor the response to changes in treatment or body position and assess pulmonary perfusion and ventilation/perfusion matching.
Background: Heterogeneity of acute respiratory distress syndrome (ARDS) could be reduced by identification of biomarker-based phenotypes. The set of ARDS biomarkers to prospectively define these phenotypes remains to be established.
Objective: To provide an overview of the biomarkers that were multivariately associated with ARDS development or mortality.
Spontaneous breathing efforts during mechanical ventilation can lead to patient self-inflicted lung injury (P-SILI). In order to prevent P-SILI, patients are generally heavily sedated and receive muscle relaxation, resulting in a slower weaning process. We present a case in which we applied partial neuromuscular blockage in order to prevent P-SILI while allowing spontaneous breathing but with limited efforts during assist mechanical ventilation.
View Article and Find Full Text PDFRecent research suggested an important role for pulmonary extracellular adenosine triphosphate (ATP) in the development of ventilation-induced lung injury. This injury is induced by mechanical deformation of alveolar epithelial cells, which in turn release ATP to the extracellular space. Measuring extracellular ATP in exhaled breath condensate (EBC) may be a non-invasive biomarker for alveolar deformation.
View Article and Find Full Text PDFStretching the alveolar epithelial type I (AT I) cells controls the intercellular signaling for the exocytosis of surfactant by the AT II cells through the extracellular release of adenosine triphosphate (ATP) (purinergic signaling). Extracellular ATP is cleared by extracellular ATPases, maintaining its homeostasis and enabling the lung to adapt the exocytosis of surfactant to the demand. Vigorous deformation of the AT I cells by high mechanical power ventilation causes a massive release of extracellular ATP beyond the clearance capacity of the extracellular ATPases.
View Article and Find Full Text PDFPreserving spontaneous breathing during mechanical ventilation prevents muscle atrophy of the diaphragm, but may lead to ventilator induced lung injury (VILI). We present a case in which monitoring of trans-pulmonary pressure and ventilation distribution using Electrical Impedance Tomography (EIT) provided essential information for preventing VILI.
View Article and Find Full Text PDF