The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an "eigenstate witness" and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements.
View Article and Find Full Text PDFLinear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system.
View Article and Find Full Text PDFQuantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution.
View Article and Find Full Text PDFQuantum systems exhibit particle- or wavelike behavior depending on the experimental apparatus they are confronted by. This wave-particle duality is at the heart of quantum mechanics. Its paradoxical nature is best captured in the delayed-choice thought experiment, in which a photon is forced to choose a behavior before the observer decides what to measure.
View Article and Find Full Text PDFBell tests - the experimental demonstration of a Bell inequality violation - are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties - both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices.
View Article and Find Full Text PDF