With the increasing age of our population, which is linked to a higher incidence of musculoskeletal diseases, there is a massive clinical need for bone implants. Porous scaffolds, usually offering a lower stiffness and allowing for the ingrowth of blood vessels and nerves, serve as an attractive alternative to conventional implants. Natural porous skeletons from marine sponges represent an array of evolutionarily optimized patterns, inspiring the design of biomaterials.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
October 2023
Background: The microbial production of isobutanol holds promise to become a sustainable alternative to fossil-based synthesis routes for this important chemical. Escherichia coli has been considered as one production host, however, due to redox imbalance, growth-coupled anaerobic production of isobutanol from glucose in E. coli is only possible if complex media additives or small amounts of oxygen are provided.
View Article and Find Full Text PDFNannochloropsis gaditana is a promising microalga for biotechnology. One of the strategies to stimulate its full potential in metabolite production is exposure to flashing lights. Here, we report how N.
View Article and Find Full Text PDFMicroalgae are considered a promising resource of proteins, lipids, carbohydrates, and other functional biomolecules for food and feed markets. Competitive drying solutions are required to meet future demands for high-quality algal biomass while ensuring proper preservation at reduced costs. Since often used drying methods, such as freeze or spray drying, are energy and time consuming, more sustainable processes remain to be developed.
View Article and Find Full Text PDFAlgae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation.
View Article and Find Full Text PDFElectrocoagulation is a promising technology to harvest microalgal biomass. However, the commonly used aluminum electrodes release undesired salts that decrease biomass value. In this study, alternative iron, zinc, and magnesium electrodes and operational parameters pH, time and current density were studied to harvest Nannochloropsis oceanica.
View Article and Find Full Text PDFIn this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions.
View Article and Find Full Text PDFThe exploration of cold-adapted microalgae offers a wide range of biotechnological applications that can be used for human, animal, and environmental benefits in colder climates. Previously, when the polar marine microalga RCC2488 was cultivated under both nitrogen replete and depleted conditions at 8°C, it accumulated lipids and carbohydrates (up to 32 and 49%, respectively), while protein synthesis decreased (up to 15%). We hypothesized that the cultivation temperature had a more significant impact on lipid accumulation than the nitrogen availability in .
View Article and Find Full Text PDFAs the periodic emission of light pulses by light emitting diodes (LEDs) is known to stimulate growth or induce high value biocompounds in microalgae, this flashing light regime was tested on growth and biochemical composition of the microalgae Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui. At low flashing light frequencies (e.g.
View Article and Find Full Text PDFPolysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives.
View Article and Find Full Text PDFDip-pen nanolithography (DPN) is used to precisely position core/thick-shell ("giant") quantum dots (gQDs; ≥10 nm in diameter) exclusively on top of silicon nanodisk antennas (≈500 nm diameter pillars with a height of ≈200 nm), resulting in periodic arrays of hybrid nanostructures and demonstrating a facile integration strategy toward next-generation quantum light sources. A three-step reading-inking-writing approach is employed, where atomic force microscopy (AFM) images of the pre-patterned substrate topography are used as maps to direct accurate placement of nanocrystals. The DPN "ink" comprises gQDs suspended in a non-aqueous carrier solvent, o-dichlorobenzene.
View Article and Find Full Text PDFIndustrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m industrial scale tubular photobioreactors (PBR).
View Article and Find Full Text PDFUnlabelled: Biodegradability is a crucial characteristic to improve the clinical potential of sol-gel-derived glass materials. To this end, a set of degradable organic/inorganic class II hybrids from a tetraethoxysilane(TEOS)-derived silica sol and oligovalent cross-linker oligomers containing oligo(d,l-lactide) domains was developed and characterized. A series of 18 oligomers (Mn: 1100-3200Da) with different degrees of ethoxylation and varying length of oligoester units was established and chemical composition was determined.
View Article and Find Full Text PDFFlashing lights are next-generation tools to mitigate light attenuation and increase the photosynthetic efficiency of microalgal cultivation systems illuminated by light-emitting diodes (LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the linear electron transfer chain, energy dissipation, and storage mechanisms of a phototroph. In particular, extremely short and intense light flashes potentially mitigate light attenuation in photobioreactors without impairing photosynthesis.
View Article and Find Full Text PDFPurpose: Aim of this study was to investigate whether a mold generated from a statistical shape model of the orbit could be generated to provide a cost-efficient means for the treatment of orbital fractures.
Materials And Methods: A statistical shape model was created from 131 computed tomographic (CT) scans of unaffected adult middle European human orbits. To generate the model, CT scans were segmented in Brainlab software, preregistered using anatomic landmarks, trimmed to an identical size, and definitely registered.
The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions (0.
View Article and Find Full Text PDFBioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae.
View Article and Find Full Text PDFUnlabelled: We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials.
View Article and Find Full Text PDFObjective: Prospective motion correction can effectively fix the imaging volume of interest. For large motion, this can lead to relative motion of coil sensitivities, distortions associated with imaging gradients and B 0 field variations. This work accounts for the B 0 field change due to subject movement, and proposes a method for correcting tissue magnetic susceptibility-related distortion in prospective motion correction.
View Article and Find Full Text PDFAn advanced process for lignin precipitation from organosolv spent liquors based on ethanol evaporation was developed. The process avoids lignin incrustations in the reactor, enhances filterability of the precipitated lignin particles and significantly reduces the liquor mass in downstream processes. Initially, lignin solubility and softening properties were understood, quantified and exploited to design an improved precipitation process.
View Article and Find Full Text PDFHigh field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) will become one of the world's most important light sources and their integration in microalgal production systems (photobioreactors) needs to be considered. LEDs can improve the quality and quantity of microalgal biomass when applied during specific growth phases. However, microalgae need a balanced mix of wavelengths for normal growth, and respond to light differently according to the pigments acquired or lost during their evolutionary history.
View Article and Find Full Text PDFPurpose: To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient nonlinearity artifacts in prospective motion correction (Mo-Co).
Methods: Nonlinear gradients can induce geometric distortions in magnetic resonance imaging, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction.
Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain.
View Article and Find Full Text PDF