Publications by authors named "Peter Schoofs"

Gene reassortment has proved useful in improving yields of influenza A antigens of egg-based inactivated vaccines, but similar approaches have been difficult with influenza B antigens. Current regulations for influenza vaccine seed viruses limit the number of egg passages and as a result resultant yields from influenza B vaccine seed viruses are frequently inconsistent. Therefore, reliable approaches to enhance yields of influenza B vaccine seed viruses are required for efficient vaccine manufacture.

View Article and Find Full Text PDF

During the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in the number of febrile reactions reported in the paediatric population in Australia shortly after vaccination with the CSL 2010 trivalent influenza vaccine (TIV) compared to previous seasons. A series of scientific investigations were initiated to identify the root cause of these adverse events, including in vitro cytokine/chemokine assays following stimulation of adult and paediatric whole blood, as well as mammalian cell lines and primary cells, profiling of molecular signatures using microarrays, and in vivo studies in rabbits, ferrets, new born rats and rhesus non-human primates (NHPs). Various TIVs (approved commercial vaccines as well as re-engineered TIVs) and their individual monovalent pool harvest (MPH) components were examined in these assays and in animal models.

View Article and Find Full Text PDF

Wild type human influenza viruses do not usually grow well in embryonated hens' eggs, the substrate of choice for the production of inactivated influenza vaccine, and vaccine viruses need to be developed specifically for this purpose. In the event of a pandemic of influenza, vaccine viruses need to be created with utmost speed. At the onset of the current A(H1N1) pandemic in April 2009, a network of laboratories began a race against time to develop suitable candidate vaccine viruses.

View Article and Find Full Text PDF