Federated multipartner machine learning has been touted as an appealing and efficient method to increase the effective training data volume and thereby the predictivity of models, particularly when the generation of training data is resource-intensive. In the landmark MELLODDY project, indeed, each of ten pharmaceutical companies realized aggregated improvements on its own classification or regression models through federated learning. To this end, they leveraged a novel implementation extending multitask learning across partners, on a platform audited for privacy and security.
View Article and Find Full Text PDFThe prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions.
View Article and Find Full Text PDFBackground: Mixed solvents MD (MDmix) simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery. One of the assumptions behind the methodology is the transferability of free energy values from the simulated cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) calculated for the different moieties of the cosolvent molecules (e.
View Article and Find Full Text PDFThe number of available protein structures in the Protein Data Bank (PDB) has considerably increased in recent years. Thanks to the growth of structures and complexes, numerous large-scale studies have been done in various research areas, e.g.
View Article and Find Full Text PDFHalogen atoms have been at the center of many rational medicinal chemistry applications in drug design. While fluorine and chlorine atoms are often added to enhance physicochemical properties, bromine and iodine elements are generally inserted to improve selectivity. Favorable halogen interactions such as halogen bond have been thoroughly studied through quantum mechanics and statistical analyses.
View Article and Find Full Text PDFThere is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability.
View Article and Find Full Text PDFToday, drug discovery routinely uses experimental assays to determine very early if a lead compound can yield certain types of off-target activity. Among such off targets is hERG. The ion channel plays a primordial role in membrane repolarization and altering its activity can cause severe heart arrhythmia and sudden death.
View Article and Find Full Text PDFIdentification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications.
View Article and Find Full Text PDFBackground: Chronic arthritis is a common feature of juvenile idiopathic arthritis (JIA) and systemic lupus erythematosus (SLE). It was subsequently discovered that Toll-like receptors (TLRs) are able to upregulate cytokine production in response to endogenous ligands released after tissue damage, suggesting that TLRs can maintain an inflammatory response even in absence of pathogen. Thus, TLRs may contribute to increased inflammation in JIA and SLE patients.
View Article and Find Full Text PDFTime scale control of molecular interactions is an essential part of biochemical systems, but very little is known about the structural factors governing the kinetics of molecular recognition. In drug design, the lifetime of drug-target complexes is a major determinant of pharmacological effects but the absence of structure-kinetic relationships precludes rational optimization of this property. Here we show that almost buried polar atoms--a common feature on protein binding sites--tend to form hydrogen bonds that are shielded from water.
View Article and Find Full Text PDFMotivation: A variety of pocket detection algorithms are now freely or commercially available to the scientific community for the analysis of static protein structures. However, since proteins are dynamic entities, enhancing the capabilities of these programs for the straightforward detection and characterization of cavities taking into account protein conformational ensembles should be valuable for capturing the plasticity of pockets, and therefore allow gaining insight into structure-function relationships.
Results: This article describes a new method, called MDpocket, providing a fast, free and open-source tool for tracking small molecule binding sites and gas migration pathways on molecular dynamics (MDs) trajectories or other conformational ensembles.
A large-scale evaluation and comparison of four cavity detection algorithms was carried out. The algorithms SiteFinder, fpocket, PocketFinder, and SiteMap were evaluated on a protein test set containing 5416 protein-ligand complexes and 9900 apo forms, corresponding to a subset of the set used earlier for benchmarking the PocketFinder algorithm. For the holo structures, all four algorithms correctly identified a similar amount of pockets (around 95%).
View Article and Find Full Text PDFDruggability predictions are important to avoid intractable targets and to focus drug discovery efforts on sites offering better prospects. However, few druggability prediction tools have been released and none has been extensively tested. Here, a set of druggable and nondruggable cavities has been compiled in a collaborative platform ( http://fpocket.
View Article and Find Full Text PDFComputational small-molecule binding site detection has several important applications in the biomedical field. Notable interests are the identification of cavities for structure-based drug discovery or functional annotation of structures. fpocket is a small-molecule pocket detection program, relying on the geometric alpha-sphere theory.
View Article and Find Full Text PDFThe increasing number of nonsymbiotic plant hemoglobins discovered in genomic studies in the past decade raises intriguing questions about their physiological role. Among them, the nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana deserves particular attention, as it combines an extremely high oxygen affinity with an internal hexacoordination of the distal histidine HisE7 to the heme iron in the absence of exogenous ligands. In order to gain insight into the structure-function relationships of the protein, the ligand binding properties of mutants of two conserved residues of the distal cavity, HisE7 --> Leu and PheB10 --> Leu, were investigated by experimental and computational studies and compared to results determined for the wild type (wt) protein.
View Article and Find Full Text PDFBackground: Virtual screening methods start to be well established as effective approaches to identify hits, candidates and leads for drug discovery research. Among those, structure based virtual screening (SBVS) approaches aim at docking collections of small compounds in the target structure to identify potent compounds. For SBVS, the identification of candidate pockets in protein structures is a key feature, and the recent years have seen increasing interest in developing methods for pocket and cavity detection on protein surfaces.
View Article and Find Full Text PDFWe have reported that cordycepin, an adenosine derivative from the fungus Cordyceps, increased interleukin (IL)-10 expression, decreased IL-2 expression and suppressed T lymphocyte activity. In the present study, we further characterized the regulatory effects of cordycepin on human immune cells. Moreover, a traditional Chinese drug, Cordyceps sinensis (CS) that contains cordycepin, was also investigated.
View Article and Find Full Text PDFCurr Drug Targets Immune Endocr Metabol Disord
December 2005
More than forty cytokines have been extensively researched on the molecular structure, cell signaling and transduction pathway. With respect to cytokine-regulating therapy in immunological imbalance however, the reported results are conflicting because of the pleiotropic functions and the intricate interactions of the cytokine network. In this review, we outline the observations on interleukin-10 (IL-10) upregulatory therapy.
View Article and Find Full Text PDFSpecific functional properties of dendritic cells (DCs) have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs). Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNgamma, CD40L, TNFalpha, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86.
View Article and Find Full Text PDFWe have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor.
View Article and Find Full Text PDFThe receptor tyrosine kinase ERBB2 plays a central role in the development of breast cancer and other epithelial malignancies. Elevated ERBB2 activity is believed to transform cells by transmitting mitogenic and antiapoptotic signals. Here we show that tightly regulated overexpression of oncogenic ERBB2 in human breast carcinoma cells does not stimulate proliferation but provokes premature senescence, accompanied by up-regulation of the cyclin-dependent kinase inhibitor P21(WAF1/CIP1).
View Article and Find Full Text PDFTherapeutic options for controlling autoimmune diseases are still very limited. Interleukin-10 has been reported to be a promising approach to therapeutic intervention. In the search for a drug which results in the selective upregulation of interleukin-10, we investigated the immunoregulative effects of cordycepin.
View Article and Find Full Text PDF