Publications by authors named "Peter Samora Owuor"

Direct ink writing (DIW) additive manufacturing is a versatile 3D printing technique for a broad range of materials. DIW can print a variety of materials provided that the ink is well-engineered with appropriate rheological properties. DIW could be an ideal technique in tissue engineering to repair and regenerate deformed or missing organs or tissues, for example, bone and tooth fracture that is a common problem that needs surgeon attention.

View Article and Find Full Text PDF

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g.

View Article and Find Full Text PDF

Conductive epoxy composites are of great interest due to their applications in electronics. They are usually made by mixing powdered conductive fillers with epoxy. However, the conductivity of the composite is limited by the low filler content because increasing filler content causes processing difficulties and reduces the mechanical properties of the epoxy host.

View Article and Find Full Text PDF

Natural building blocks like proteins and hydroxyapatite (HA) are found in abundance. However, their effective utilization to fabricate environment-friendly, strong, stiff, and tough materials remains a challenge. This work reports on the synthesis of a layered material from entirely natural building blocks.

View Article and Find Full Text PDF

Laser-induced graphene (LIG), a graphene structure synthesized by a one-step process through laser treatment of commercial polyimide (PI) film in an ambient atmosphere, has been shown to be a versatile material in applications ranging from energy storage to water treatment. However, the process as developed produces only a 2D product on the PI substrate. Here, a 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive-manufacturing technique.

View Article and Find Full Text PDF

Schwartzites are 3D porous solids with periodic minimal surfaces having negative Gaussian curvatures and can possess unusual mechanical and electronic properties. The mechanical behavior of primitive and gyroid schwartzite structures across different length scales is investigated after these geometries are 3D printed at centimeter length scales based on molecular models. Molecular dynamics and finite elements simulations are used to gain further understanding on responses of these complex solids under compressive loads and kinetic impact experiments.

View Article and Find Full Text PDF

Weak van der Waals forces between inert hexagonal boron nitride (h-BN) nanosheets make it easy for them to slide over each other, resulting in an unstable structure in macroscopic dimensions. Creating interconnections between these inert nanosheets can remarkably enhance their mechanical properties. However, controlled design of such interconnections remains a fundamental problem for many applications of h-BN foams.

View Article and Find Full Text PDF

The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment.

View Article and Find Full Text PDF

Building three-dimensional (3D) structures from their constituent zero-, one-, and two-dimensional nanoscale building blocks in a bottom-up assembly is considered the holey grail of nanotechnology. However, fabricating such 3D nanostructures at ambient conditions still remains a challenge. Here, we demonstrate an easily scalable facile method to fabricate 3D nanostructures made up of entirely zero-dimensional silicon dioxide (SiO) nanoparticles.

View Article and Find Full Text PDF