Publications by authors named "Peter Sage"

Background: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in , , or , which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function.

Methods: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of pathogenic variants.

View Article and Find Full Text PDF

Introduction: Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking.

View Article and Find Full Text PDF

Follicular helper T (Tfh) cells are essential for the formation of high affinity antibodies after vaccination or infection. Although the signals responsible for initiating Tfh differentiation from naïve T cells have been studied, the signals controlling sequential developmental stages culminating in optimal effector function are not well understood. Here we use fate mapping strategies for the cytokine IL-21 to uncover sequential developmental stages of Tfh differentiation including a progenitor-like stage, a fully developed effector stage and a post-effector Tfh stage that maintains transcriptional and epigenetic features without IL-21 production.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of older donor organs on younger recipients in organ transplantation, hypothesizing that aging donor organs can induce cellular senescence in younger mice.
  • Results showed that young and middle-aged mice receiving older organs exhibited increased senescent cells in various tissues and experienced diminished physical performance and cognitive abilities within 30 days.
  • Treatment with senolytics, which target and eliminate senescent cells, was found to reduce harmful effects of the old organs and improve physical performance in younger recipients, suggesting a potential strategy for enhancing transplant outcomes.
View Article and Find Full Text PDF

Follicular helper T (Tfh) cells have been implicated in controlling rejection after allogeneic kidney transplantation, but the precise subsets, origins, and functions of Tfh cells in this process have not been fully characterized. Here we show that a subset of effector Tfh cells marked by previous IL-21 production is potently induced during allogeneic kidney transplantation and is inhibited by immunosuppressive agents. Single-cell RNA-Seq revealed that these lymph node (LN) effector Tfh cells have transcriptional and clonal overlap with IL-21-producing kidney-infiltrating Tfh cells, implicating common origins and developmental trajectories.

View Article and Find Full Text PDF

Background: Although donor-specific antibody pre- and posttransplantation is routinely assessed, accurate quantification of memory alloreactive B cells that mediate recall antibody response remains challenging. Major histocompatibility complex (MHC) tetramers have been used to identify alloreactive B cells in mice and humans, but the specificity of this approach has not been rigorously assessed.

Methods: B-cell receptors from MHC tetramer-binding single B cells were expressed as mouse recombinant immunoglobulin G1 (rIgG1) monoclonal antibodies, and the specificity was assessed with a multiplex bead assay.

View Article and Find Full Text PDF

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45 sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant.

View Article and Find Full Text PDF

T peripheral helper (Tph) cells, identified in the synovium of adults with seropositive rheumatoid arthritis, drive B cell maturation and antibody production in non-lymphoid tissues. We sought to determine if similarly dysregulated T cell-B cell interactions underlie another form of inflammatory arthritis, juvenile oligoarthritis (oligo JIA). Clonally expanded Tph cells able to promote B cell antibody production preferentially accumulated in the synovial fluid (SF) of oligo JIA patients with antinuclear antibodies (ANA) compared to autoantibody-negative patients.

View Article and Find Full Text PDF

Several large registries have evaluated outcomes after percutaneous coronary intervention (PCI) in the USA, however there are no contemporary data regarding long-term outcomes after PCI, particularly comparing new generation drug-eluting stents (DES) with other stents in Australia. Additionally, approval of new-generation drug-eluting stents (DES) is almost exclusively based on non-inferiority trials comparing outcomes with early generation DES, and there are limited data comparing safety and efficacy outcomes of new-generation DES with bare metal stents (BMS). This study reports in-hospital and long-term outcomes after PCI with the Xience DES from a large national registry, the GenesisCare Outcomes Registry (GCOR).

View Article and Find Full Text PDF

The lymph node (LN) is the primary site of alloimmunity activation and regulation during transplantation. Here, we investigated how fibroblastic reticular cells (FRCs) facilitate the tolerance induced by anti-CD40L in a murine model of heart transplantation. We found that both the absence of LNs and FRC depletion abrogated the effect of anti-CD40L in prolonging murine heart allograft survival.

View Article and Find Full Text PDF

Background: Following allogeneic kidney transplantation, a substantial proportion of graft loss is attributed to the formation of donor-specific antibodies and antibody-mediated rejection. B cells infiltrate kidney grafts during antibody-mediated rejection; however, the origins, repertoires, and functions of these intrarenal B cells remain elusive.

Methods: Here, we use murine allogeneic kidney transplant models to study the origins, transcriptional programming and B cell receptor repertoire of intragraft B cells, and in vitro stimulation assays to evaluate the ability of intragraft B cells to promote CD4+ T cell expansion.

View Article and Find Full Text PDF

Lymph nodes (LNs) are the critical sites of immunity, and the stromal cells of LNs are crucial to their function. Our understanding of the stromal compartment of the LN has deepened recently with the characterization of nontraditional stromal cells. CD41 (integrin αIIb) is known to be expressed by platelets and hematolymphoid cells.

View Article and Find Full Text PDF

Purpose Of Review: Antibody-mediated rejection (AbMR) after solid organ transplantation is tightly controlled by multiple cells of the immune system. Tfh and Tfr cells are essential controllers of antibody responses making them putative targets for therapeutics. However, the mechanisms of how Tfh and Tfr cells regulate B cell and antibody responses are not completely understood.

View Article and Find Full Text PDF

Antibody-mediated rejection is a major cause of long-term graft loss in kidney transplant patients. T follicular helper (Tfh) cells are crucial for assisting B cell differentiation and are required for an efficient antibody response. Anti-thymocyte globulin (ATG) is a widely used lymphocyte-depleting induction therapy.

View Article and Find Full Text PDF

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells.

View Article and Find Full Text PDF
Article Synopsis
  • T follicular helper (Tfh) cells enhance germinal center (GC) reactions by increasing the frequency and mutation rates of Spike-specific B cells, while follicular regulatory T (Tfr) cells limit these factors to maintain clonal diversity.
  • The study found that the balance between Tfh and Tfr cells is crucial, as manipulating either cell type after vaccination significantly affected the somatic hypermutation (SHM) and clonal competition of B cells.
  • Aged mice exhibited weaker GC responses due to altered Tfh and Tfr function, highlighting the importance of these cells in effectively responding to SARS-CoV-2 spike protein vaccination to ensure optimal humoral immunity.*
View Article and Find Full Text PDF

Lymph node (LN)-resident stromal cells play an essential role in the proper functioning of LNs. The stromal compartment of the LN undergoes significant compensatory changes to produce a milieu amenable for regulation of the immune response. We have identified a distinct population of leptin receptor-expressing (LepR) stromal cells, located in the vicinity of the high endothelial venules (HEVs) and lymphatics.

View Article and Find Full Text PDF

T Follicular helper (Tfh) cells stimulate, whereas T follicular regulatory (Tfr) cells inhibit, effector B cell responses. Although new tools have been developed to assess the functional roles of Tfh and Tfr cells in vivo, methods to assess mechanisms have been limited. One such limitation has been the ability of in vitro functional assays to recapitulate robust germinal center-like responses.

View Article and Find Full Text PDF

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need.

View Article and Find Full Text PDF

The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4-Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II-mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus.

View Article and Find Full Text PDF

The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract.

View Article and Find Full Text PDF

The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions.

View Article and Find Full Text PDF