Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift.
View Article and Find Full Text PDFWe used hydrogeologic models to assess how fault-zone properties promote or inhibit the downward propagation of fluid overpressures from a basal reservoir injection well (150 m from fault zone, Q = 5000 m /day) into the underlying crystalline basement rocks. We varied the permeability of the fault-zone architectural components and a crystalline basement weathered layer as part of a numerical sensitivity study. Realistic conduit-barrier style fault zones effectively transmit elevated pore pressures associated with 4 years of continuous injection to depths of approximately 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2017
Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood.
View Article and Find Full Text PDF