Magnetism of oxide antiferromagnets (AFMs) has been studied in single crystals and extended thin films. The properties of AFM nanostructures still remain underexplored. Here, we report on the fabrication and magnetic imaging of granular 100 nm-thick magnetoelectric CrO films patterned in circular bits with diameters ranging from 500 down to 100 nm.
View Article and Find Full Text PDFMagnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, controlling and improving distributions of device properties becomes a key enabler of new applications at this stage of technology development. Here, we introduce a non-contact metrology technique deploying scanning NV magnetometry (SNVM) to investigate MRAM performance at the individual bit level.
View Article and Find Full Text PDFACS Appl Nano Mater
February 2024
Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets in a single step. We fabricate cobalt nanomagnets in such a process and characterize their content, saturation magnetization, and stray magnetic field profiles by using a combination of transmission electron microscopy and scanning nitrogen-vacancy (NV) magnetometry. We find agreement between the measured stray field profiles and saturation magnetization with micromagnetic simulations.
View Article and Find Full Text PDFElectronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.
View Article and Find Full Text PDFMagic-angle twisted bilayer graphene (MATBG) hosts a number of correlated states of matter that can be tuned by electrostatic doping. Transport and scanning-probe experiments have shown evidence for band, correlated and Chern insulators along with superconductivity. This variety of in situ tunable states has allowed for the realization of tunable Josephson junctions.
View Article and Find Full Text PDFA unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°.
View Article and Find Full Text PDFMagnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry.
View Article and Find Full Text PDFTwisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps.
View Article and Find Full Text PDFWhen twisted to angles near 1°, graphene multilayers provide a window on electron correlation physics. Here, we report the discovery of a correlated electron-hole state in double-bilayer graphene twisted to 2.37°.
View Article and Find Full Text PDFIn situ electrostatic control of two-dimensional superconductivity is commonly limited due to large charge carrier densities, and gate-defined Josephson junctions are therefore rare. Magic-angle twisted bilayer graphene (MATBG) has recently emerged as a versatile platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. Although MATBG appears to be an ideal two-dimensional platform for gate-tunable superconductivity, progress towards practical implementations has been hindered by the need for well-defined gated regions.
View Article and Find Full Text PDFControl over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently.
View Article and Find Full Text PDFIn multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate, and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g factor g_{v}. However, control over g_{v} has not been demonstrated yet.
View Article and Find Full Text PDFWhen two dimensional crystals are atomically close, their finite thickness becomes relevant. Using transport measurements, we investigate the electrostatics of two graphene layers, twisted by θ = 22° such that the layers are decoupled by the huge momentum mismatch between the K and K' points of the two layers. We observe a splitting of the zero-density lines of the two layers with increasing interlayer energy difference.
View Article and Find Full Text PDFCrystal fields occur due to a potential difference between chemically different atomic species. In van der Waals heterostructures such fields are naturally present perpendicular to the planes. It has been realized recently that twisted graphene multilayers provide powerful playgrounds to engineer electronic properties by the number of layers, the twist angle, applied electric biases, electronic interactions, and elastic relaxations, but crystal fields have not received the attention they deserve.
View Article and Find Full Text PDFWe report on charge detection in electrostatically defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high-quality quantum dots. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate.
View Article and Find Full Text PDFWe demonstrate high-frequency mechanical resonators in ballistic graphene p-n junctions. Fully suspended graphene devices with two bottom gates exhibit ballistic bipolar behavior after current annealing. We determine the graphene mass density and built-in tension for different current annealing steps by comparing the measured mechanical resonant response to a simplified membrane model.
View Article and Find Full Text PDFWe present measurements of quantized conductance in electrostatically induced quantum point contacts in bilayer graphene. The application of a perpendicular magnetic field leads to an intricate pattern of lifted and restored degeneracies with increasing field: at zero magnetic field the degeneracy of quantized one-dimensional subbands is four, because of a twofold spin and a twofold valley degeneracy. By switching on the magnetic field, the valley degeneracy is lifted.
View Article and Find Full Text PDFThe strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band.
View Article and Find Full Text PDFWe explore a network of electronic quantum valley Hall states in the moiré crystal of minimally twisted bilayer graphene. In our transport measurements, we observe Fabry-Pérot and Aharanov-Bohm oscillations that are robust in magnetic fields ranging from 0 to 8 T, which is in strong contrast to more conventional two-dimensional systems where trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic field and the linear spacing in density indicate that charge carriers in the bulk flow in topologically protected, one-dimensional channels.
View Article and Find Full Text PDFElectrostatic confinement of charge carriers in bilayer graphene provides a unique platform for carbon-based spin, charge, or exchange qubits. By exploiting the possibility to induce a band gap with electrostatic gating, we form a versatile and widely tunable multiquantum dot system. We demonstrate the formation of single, double and triple quantum dots that are free of any sign of disorder.
View Article and Find Full Text PDFWe report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as R ∼ 10 GΩ. This exceeds previously reported values of R = 10-100 kΩ.1-3 We attribute this improvement to the use of a graphite back gate.
View Article and Find Full Text PDFAt high magnetic fields the conductance of graphene is governed by the half-integer quantum Hall effect. By local electrostatic gating a p-n junction perpendicular to the graphene edges can be formed, along which quantum Hall channels copropagate. It has been predicted by Tworzidło and co-workers that if only the lowest Landau level is filled on both sides of the junction, the conductance is determined by the valley (isospin) polarization at the edges and by the width of the flake.
View Article and Find Full Text PDFWhile Fabry-Pérot (FP) resonances and Moiré superlattices are intensively studied in graphene on hexagonal boron nitride (hBN), the two effects have not been discussed in their coexistence. Here we investigate the FP oscillations in a ballistic pnp-junctions in the presence and absence of a Moiré superlattice. First, we address the effect of the smoothness of the confining potential on the visibility of the FP resonances and carefully map the evolution of the FP cavity size as a function of densities inside and outside the cavity in the absence of a superlattice, when the cavity is bound by regular pn-junctions.
View Article and Find Full Text PDFThe formation of quantum Hall channels inside the bulk of graphene is studied using various contact and gate geometries. p-n junctions are created along the longitudinal direction of samples, and enhanced conductance is observed in the case of bipolar doping due to the new conducting channels formed in the bulk, whose position, propagating direction and, in one geometry, coupling to electrodes are determined by the gate-controlled filling factor across the device. This effect could be exploited to probe the behavior and interaction of quantum Hall channels protected against uncontrolled scattering at the edges.
View Article and Find Full Text PDF