Atherosclerosis is a chronic inflammatory disease caused by deposition of oxidative low-density lipoprotein (LDL) in the arterial intima which triggers the innate immune response through myeloid cells such as macrophages. Regulatory T cells (Tregs) play an important role in controlling the progression or regression of atherosclerosis by resolving macrophage-mediated inflammatory functions. Interleukin-2 (IL-2) signaling is essential for homeostasis of Tregs.
View Article and Find Full Text PDFAdvances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor (TF)-based scaffold technology.
View Article and Find Full Text PDFIL15 induces the activation and proliferation of natural killer (NK) and memory CD8 T cells and has preclinical antitumor activity. Given the superior activity and favorable kinetics of ALT-803 (IL15N72D:IL15RαSu/IgG1 Fc complex) over recombinant human IL15 (rhIL15) in animal models, we performed this first-in-human phase I trial of ALT-803 in patients with advanced solid tumors. Patients with incurable advanced melanoma, renal cell, non-small cell lung, and head and neck cancer were treated with ALT-803 0.
View Article and Find Full Text PDFBackground: Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rβγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC.
View Article and Find Full Text PDFALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8 T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies.
View Article and Find Full Text PDFIL-15 and its receptor α (IL-15Rα) are co-expressed on antigen-presenting cells, allowing transpresentation of IL-15 to immune cells bearing IL-2Rβγ and stimulation of effector immune responses. We reported previously that the high-affinity interactions between an IL-15 superagonist (IL-15N72D) and the extracellular IL-15Rα sushi domain (IL-15RαSu) could be exploited to create a functional scaffold for the design of multivalent disease-targeted complexes. The IL-15N72D·IL-15RαSuFc complex, also known as ALT-803, is a multimeric complex constructed by fusing IL-15N72D·IL-15RαSu to the Fc domain of IgG1.
View Article and Find Full Text PDFIL15, a potent stimulant of CD8(+) T cells and natural killer (NK) cells, is a promising cancer immunotherapeutic. ALT-803 is a complex of an IL15 superagonist mutant and a dimeric IL15 receptor αSu/Fc fusion protein that was found to exhibit enhanced biologic activity in vivo, with a substantially longer serum half-life than recombinant IL15. A single intravenous dose of ALT-803, but not IL15, eliminated well-established tumors and prolonged survival of mice bearing multiple myeloma.
View Article and Find Full Text PDFPurpose: Anti-CD20 monoclonal antibodies (mAb) are an important immunotherapy for B-cell lymphoma, and provide evidence that the immune system may be harnessed as an effective lymphoma treatment approach. ALT-803 is a superagonist IL-15 mutant and IL-15Rα-Fc fusion complex that activates the IL-15 receptor constitutively expressed on natural killer (NK) cells. We hypothesized that ALT-803 would enhance anti-CD20 mAb-directed NK-cell responses and antibody-dependent cellular cytotoxicity (ADCC).
View Article and Find Full Text PDFGlioblastoma is the most aggressive primary central nervous system malignancy with a poor prognosis in patients. Despite the need for better treatments against glioblastoma, very little progress has been made in discovering new therapies that exhibit superior survival benefit than the standard of care. Immunotherapy has been shown to be a promising treatment modality that could help improve clinical outcomes of glioblastoma patients by assisting the immune system to overcome the immunosuppressive tumor environment.
View Article and Find Full Text PDFIntravesical Bacillus Calmette-Guérin (BCG) has been shown to induce a specific immunologic response (i.e., activation of IL-2 and effector T-cells), while preclinical studies using ALT-803 (mutated IL-15 analogue combined with IL-15Rα-Fc fusion) have shown promising results by prolonging the agent's half-life and stimulating CD8+ T-cells.
View Article and Find Full Text PDFALT-803, an interleukin-15-based superagonist, induces memory CD8 T cells to proliferate, upregulate receptors involved in innate immunity, secrete interferon γ and acquire the ability to kill malignant cells in the absence of antigenic stimulation. Thus, ALT-803 can promote the expansion and activation of memory CD8 T cells while converting them into innate immune effector cells that exhibit robust antineoplastic activity.
View Article and Find Full Text PDFALT-803, a complex of an interleukin (IL)-15 superagonist mutant and a dimeric IL-15 receptor αSu/Fc fusion protein, was found to exhibit significantly stronger in vivo biologic activity on NK and T cells than IL-15. In this study, we show that a single dose of ALT-803, but not IL-15 alone, eliminated well-established 5T33P and MOPC-315P myeloma cells in the bone marrow of tumor-bearing mice. ALT-803 treatment also significantly prolonged survival of myeloma-bearing mice and provided resistance to rechallenge with the same tumor cells through a CD8(+) T-cell-dependent mechanism.
View Article and Find Full Text PDFBackground: The tissue factor (TF)-dependent extrinsic pathway has been suggested to be a central mechanism by which the coagulation cascade is locally activated in the lungs of patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS) and thus represents an attractive target for therapeutic intervention. This study was designed to determine the pharmacokinetic and safety profiles of ALT-836, an anti-TF antibody, in patients with ALI/ARDS.
Methods: This was a prospective, randomized, placebo-controlled, dose-escalation Phase I clinical trial in adult patients who had suspected or proven infection, were receiving mechanical ventilation and had ALI/ARDS (PaO(2)/FiO(2) ≤ 300 mm).
IL-15, a promising cytokine for treating cancer and viral diseases, is presented in trans by the IL-15 receptor (IL-15R) alpha-chain to the IL-15Rβγc complex displayed on the surface of T cells and natural killer (NK) cells. We previously reported that an asparagine to aspartic acid substitution at amino acid 72 (N72D) of IL-15 provides a 4-5-fold increase in biological activity compared to the native molecule. In this report, we describe Chinese hamster ovary (CHO) cell expression of a soluble complex (IL-15 N72D:IL-15RαSu/Fc) consisting of the IL-15 N72D superagonist and a dimeric IL-15Rα sushi domain-IgG1 Fc fusion protein.
View Article and Find Full Text PDFPurpose: ALT-801 is a bifunctional fusion protein comprising interleukin-2 (IL-2) linked to a soluble, single-chain T-cell receptor domain that recognizes a peptide epitope (aa264-272) of the human p53 antigen displayed on cancer cells in the context of HLA-A*0201 (p53+/HLA-A*0201). We evaluated the safety, pharmacokinetics, and pharmacodynamics of ALT-801 in p53+/HLA-A*0201 patients with metastatic malignancies.
Experimental Design: p53+/HLA-A*0201 patients were treated with ALT-801 on a schedule of four daily 15-minute intravenous infusions, then 10 days rest and four more daily infusions.
Human interleukin-15 (hIL-15) and its receptor α (hIL-15Rα) are co-expressed in antigen presenting cells allowing trans-presentation of the cytokine to immune effector cells. We exploited the high-affinity interactions between hIL-15 and the extracellular hIL-15Rα sushi domain (hIL-15RαSu) to create a functional scaffold for the design of multispecific fusion protein complexes. Using single-chain T cell receptors (scTCRs) as recognition domains linked to the IL-15:IL-15Rα scaffold, we generated both bivalent and bispecific complexes.
View Article and Find Full Text PDFTissue factor (TF) antagonists targeting the factor VII (FVII) binding domain have been shown to interrupt acute vascular thrombus formation without impairing haemostasis in non-human primates. In this study, we evaluate whether a human/mouse chimeric monoclonal antibody (ALT-836, formerly known as Sunol-cH36) blocking the factor X/factor IX (FX/FIX) binding site of tissue factor could achieve similar clinical benefits in an arterial thrombosis model induced by surgical endarterectomy in chimpanzees. In this model, sequential surgical endarterectomies on right and left superficial femoral arteries were performed 30 days apart in five chimpanzees.
View Article and Find Full Text PDFIL-15 is an immunostimulatory cytokine trans-presented with the IL-15 receptor alpha-chain to the shared IL-2/IL-15Rbeta and common gamma-chains displayed on the surface of T cells and NK cells. To further define the functionally important regions of this cytokine, activity and binding studies were conducted on human IL-15 muteins generated by site-directed mutagenesis. Amino acid substitutions of the asparagine residue at position 72, which is located at the end of helix C, were found to provide both partial agonist and superagonist activity, with various nonconservative substitutions providing enhanced activity.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2008
We have previously reported that a single-chain T cell receptor/IL-2 fusion protein (scTCR-IL2) exhibits potent targeted antitumor activity in nude mice bearing human tumor xenografts that display cognate peptide/HLA complexes. In this study, we further explore the mechanism of action of this molecule. We compared the biological activities of c264scTCR-IL2, a scTCR-IL2 protein recognizing the aa264-272 peptide of human p53, with that of MART-1scTCR-IL2, which recognizes the MART-1 melanoma antigen (aa27-35).
View Article and Find Full Text PDFWe previously have generated a single-chain T cell receptor-cytokine fusion protein (264scTCR/IL-2) comprising interleukin-2 genetically linked to a soluble HLA-A2.1-restricted TCR recognizing a peptide of human p53 protein. In this report, we show that 264scTCR/IL-2 inhibits the growth of primary tumors derived from the A375 (p53+/HLA-A2.
View Article and Find Full Text PDFIntracellular Ags are processed into small peptides that are presented on cell surfaces in the context of HLA class I molecules. These peptides are recognized by TCRs displayed by CD8+ T lymphocytes (T cells). To date, direct identification and quantitation of these peptides has relied primarily on mass spectrometry analysis, which is expensive and requires large quantities of diseased tissues to obtain useful results.
View Article and Find Full Text PDF