More than two million people worldwide are affected by life-threatening, invasive fungal infections annually. Candida species are the most common cause of nosocomial, invasive fungal infections and are associated with mortality rates above 40%. Despite the increasing incidence of drug-resistance, the development of novel antifungal formulations has been limited.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2021
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation.
View Article and Find Full Text PDFSynthetic polymers have shown promise in combating multidrug-resistant bacteria. However, the biological effects of sequence control in synthetic antimicrobial polymers are currently not well understood. As such, we investigate the antimicrobial effects of monomer distribution within linear high-order quasi-block copolymers consisting of aminoethyl, phenylethyl, and hydroxyethyl acrylamides made in a one-pot synthesis approach via photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerisation (PET-RAFT).
View Article and Find Full Text PDF