Publications by authors named "Peter R Andersen"

This work presents the shape optimization and subsequent experimental validation of an acoustic lens with application to a compact loudspeaker, such as found in commercial speakerphones. The shape optimization framework is based on a combined lumped parameter and boundary element method model using free form deformation geometry parameterization. To test the optimized design, the loudspeaker lens is three-dimensionally printed and experimentally characterized under anechoic conditions on a finite baffle with respect to its off-axis frequency response.

View Article and Find Full Text PDF

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline.

View Article and Find Full Text PDF

Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood.

View Article and Find Full Text PDF

A number of studies have investigated the effect of training with a moderate exercise dose (3-6 h/weekly) on the inflammatory profile in blood, and the data are inconsistent. Cross-sectional studies indicate a positive effect of physical activity level on inflammation levels and risk of metabolic disease. However, it is not clear whether this may be dose dependent and if very prolonged repeated exercise therefore may be beneficial for low-grade inflammation.

View Article and Find Full Text PDF

Introduction/purpose: Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg·min) after repeated prolonged exercise).

Methods: A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests.

View Article and Find Full Text PDF

Background: The upper rates of energy expenditure (EE) and the corresponding regulation of energy intake (EI), as described in younger trained subjects, are not well elucidated in older subjects.

Objectives: The aim was to investigate EE in older men during prolonged cycling and determine whether it is sufficiently matched by EI to maintain energy balance. In addition, we investigated appetite ratings and concentrations of appetite-regulating hormones.

View Article and Find Full Text PDF

The RNA exosome complex constitutes the major nuclear eukaryotic 3'-5' exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT) complex. How NEXT targets RNA has remained elusive.

View Article and Find Full Text PDF

The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.

View Article and Find Full Text PDF

Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers.

View Article and Find Full Text PDF

DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering 'cut-and-paste' DNA mobilization until accumulating mutations will eventually restrict events of transposition.

View Article and Find Full Text PDF

Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome and the cap-binding complex (CBC).

View Article and Find Full Text PDF

The nuclear cap-binding complex (CBC) stimulates multiple steps in several RNA maturation pathways, but how it functions in humans is incompletely understood. For small, capped RNAs such as pre-snRNAs, the CBC recruits PHAX. Here, we identify the CBCAP complex, composed of CBC, ARS2 and PHAX, and show that both CBCAP and CBC-ARS2 complexes can be reconstituted from recombinant proteins.

View Article and Find Full Text PDF

Active human promoters produce promoter-upstream transcripts (PROMPTs). Why these RNAs are coupled to decay, whereas their neighboring promoter-downstream mRNAs are not, is unknown. Here high-throughput sequencing demonstrates that PROMPTs generally initiate in the antisense direction closely upstream of the transcription start sites (TSSs) of their associated genes.

View Article and Find Full Text PDF

Erythropoietin (Epo) treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo) treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily.

View Article and Find Full Text PDF

Efforts to catalog eukaryotic transcripts have uncovered many small RNAs (sRNAs) derived from gene termini and splice sites. Their biogenesis pathways are largely unknown, but a mechanism based on backtracking of RNA polymerase II (RNAPII) has been suggested. By sequencing transcripts 12-100 nucleotides in length from cells depleted of major RNA degradation enzymes and RNAs associated with Argonaute (AGO1/2) effector proteins, we provide mechanistic models for sRNA production.

View Article and Find Full Text PDF

Sleeping Beauty (SB) DNA transposon-based vectors belong to a growing family of nonviral integrating vectors that represent attractive alternatives to conventional virus-based integrating gene vehicles. Because of concerns related to mutagenesis and/or activation of cellular genes by integrating vectors, much attention has been paid to integration site preferences and the ability of vectors to influence expression of neighboring genes. Here, we test the hypothesis that terminal repeats of transposons carry cis-acting regulatory sequences.

View Article and Find Full Text PDF