Publications by authors named "Peter Q Nguyen"

Article Synopsis
  • Ocean health is declining due to human activities like plastic pollution, climate change, and algal blooms, jeopardizing ecosystem regeneration.
  • Synthetic biology offers potential solutions to these problems by enhancing the natural resilience of ocean systems against rapid environmental changes.
  • The proposed framework focuses on using synthetic biology to address key issues such as plastic waste, coral bleaching, and harmful algal blooms to promote sustainable ocean management.
View Article and Find Full Text PDF

Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals.

View Article and Find Full Text PDF

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators.

View Article and Find Full Text PDF

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out.

View Article and Find Full Text PDF

Integrating synthetic biology into wearables could expand opportunities for noninvasive monitoring of physiological status, disease states and exposure to pathogens or toxins. However, the operation of synthetic circuits generally requires the presence of living, engineered bacteria, which has limited their application in wearables. Here we report lightweight, flexible substrates and textiles functionalized with freeze-dried, cell-free synthetic circuits, including CRISPR-based tools, that detect metabolites, chemicals and pathogen nucleic acid signatures.

View Article and Find Full Text PDF

Asymptomatic carriers of parasites hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (<100 parasites per microliter blood) that work in resource-limited settings (RLS). Sensitive point-of-care diagnostics are also lacking for nonfalciparum malaria, which is characterized by lower density infections and may require additional therapy for radical cure.

View Article and Find Full Text PDF

Materials that sense and respond to biological signals in their environment have a broad range of potential applications in drug delivery, medical devices and diagnostics. Nucleic acids are important biological cues that encode information about organismal identity and clinically relevant phenotypes such as drug resistance. We recently developed a strategy to design nucleic acid-responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator.

View Article and Find Full Text PDF

Lack of access to safe drinking water is a global problem, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA Output Sensors Activated by Ligand Induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer.

View Article and Find Full Text PDF

Stimuli-responsive materials activated by biological signals play an increasingly important role in biotechnology applications. We exploit the programmability of CRISPR-associated nucleases to actuate hydrogels containing DNA as a structural element or as an anchor for pendant groups. After activation by guide RNA-defined inputs, Cas12a cleaves DNA in the gels, thereby converting biological information into changes in material properties.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in synthetic biology are changing how we understand and treat diseases, making education about these topics essential for future decision-makers.
  • Hands-on learning in synthetic biology can be challenging due to the need for costly equipment and expertise to grow living cells.
  • The BioBits Health educational kit offers lab activities and curricula to teach high school students about antibiotic resistance and CRISPR-Cas9 gene editing through easy-to-use freeze-dried, cell-free reactions with visual outputs.
View Article and Find Full Text PDF

Cell-free biocatalysis systems offer many benefits for chemical manufacturing, but their widespread applicability is hindered by high costs associated with enzyme purification, modification, and immobilization on solid substrates, in addition to the cost of the material substrates themselves. Herein, we report a "bootstrapped" biocatalysis substrate material that is produced directly in bacterial culture and is derived from biofilm matrix proteins, which self-assemble into a nanofibrous mesh. We demonstrate that this material can simultaneously purify and immobilize multiple enzymes site specifically and directly from crude cell lysates by using a panel of genetically programmed, mutually orthogonal conjugation domains.

View Article and Find Full Text PDF

Synthetic biology offers opportunities for experiential educational activities at the intersection of the life sciences, engineering, and design. However, implementation of hands-on biology activities in classrooms is challenging because of the need for specialized equipment and expertise to grow living cells. We present BioBits™ Bright, a shelf-stable, just-add-water synthetic biology education kit with easy visual outputs enabled by expression of fluorescent proteins in freeze-dried, cell-free reactions.

View Article and Find Full Text PDF

Hands-on demonstrations greatly enhance the teaching of science, technology, engineering, and mathematics (STEM) concepts and foster engagement and exploration in the sciences. While numerous chemistry and physics classroom demonstrations exist, few biology demonstrations are practical and accessible due to the challenges and concerns of growing living cells in classrooms. We introduce BioBits™ Explorer, a synthetic biology educational kit based on shelf-stable, freeze-dried, cell-free (FD-CF) reactions, which are activated by simply adding water.

View Article and Find Full Text PDF

The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon.

View Article and Find Full Text PDF

Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium.

View Article and Find Full Text PDF

Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods.

View Article and Find Full Text PDF

Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury.

View Article and Find Full Text PDF

Bottom-up fabrication of nanoscale materials has been a significant focus in materials science for expanding our technological frontiers. This assembly concept, however, is old news to biology - all living organisms fabricate themselves using bottom-up principles through a vast self-organizing system of incredibly complex biomolecules, a marvelous dynamic that we are still attempting to unravel. Can we use what we have gleaned from biology thus far to illuminate alternative strategies for designer nanomaterial manufacturing? In the present review article, new synthetic biology efforts toward using bacterial biofilms as platforms for the synthesis and secretion of programmable nanomaterials are described.

View Article and Find Full Text PDF

As interest in using proteins to assemble functional, biocompatible, and environmentally friendly materials is growing, developing scalable protocols for producing recombinant proteins with customized functions coupled to straightforward fabrication processes is becoming crucial. Here, we use bacteria to produce amyloid protein nanofibers that are key constituents of the biofilm extracellular matrix and show that protein nanofiber aggregates can be purified using a fast and easily accessible vacuum filtration procedure. With their extreme resistance to heat, detergents, solvents, and denaturing agents, engineered curli nanofibers remain functional throughout the rigorous processing and can be used to assemble macroscopic materials directly from broth culture.

View Article and Find Full Text PDF

Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules.

View Article and Find Full Text PDF

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays.

View Article and Find Full Text PDF

Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E.

View Article and Find Full Text PDF

The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains.

View Article and Find Full Text PDF